• Advanced Photonics
  • Vol. 2, Issue 4, 044001 (2020)
Tengfei Hao1、2、3, Yanzhong Liu1、2、3, Jian Tang1、2、3, Qizhuang Cen4, Wei Li1、2、3, Ninghua Zhu1、2、3, Yitang Dai4, José Capmany5, Jianping Yao6, and Ming Li1、2、3、*
Author Affiliations
  • 1Chinese Academy of Sciences, Institute of Semiconductors, State Key Laboratory on Integrated Optoelectronics, Beijing, China
  • 2University of Chinese Academy of Sciences, School of Electronic, Electrical, and Communication Engineering, Beijing, China
  • 3University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
  • 4Beijing University of Posts and Telecommunications, State Key Laboratory of Information Photonics and Optical Communications, Beijing, China
  • 5Universitat Politécnica de Valencia, ITEAM Research Institute, Photonics Research Labs, Valencia, Spain
  • 6University of Ottawa, Microwave Photonics Research Laboratory, Ottawa, Ontario, Canada
  • show less
    DOI: 10.1117/1.AP.2.4.044001 Cite this Article Set citation alerts
    Tengfei Hao, Yanzhong Liu, Jian Tang, Qizhuang Cen, Wei Li, Ninghua Zhu, Yitang Dai, José Capmany, Jianping Yao, Ming Li. Recent advances in optoelectronic oscillators[J]. Advanced Photonics, 2020, 2(4): 044001 Copy Citation Text show less
    References

    [1] L. Maleki. The optoelectronic oscillator. Nat. Photonics, 5, 728-730(2011).

    [2] X. S. Yao, L. Maleki. Optoelectronic oscillator for photonic systems. IEEE J. Quantum Electron., 32, 1141-1149(1996).

    [3] X. S. Yao, L. Maleki. Optoelectronic microwave oscillator. J. Opt. Soc. Am. B, 13, 1725-1735(1996).

    [4] D. Eliyahu, D. Seidel, L. Maleki. Phase noise of a high performance OEO and an ultra low noise floor cross-correlation microwave photonic homodyne system. IEEE Int. Freq. Control Symp.(2008).

    [5] A. Matsko et al. Whispering gallery mode based optoelectronic microwave oscillator. J. Mod. Opt., 50, 2523-2542(2003).

    [6] K. Volyanskiy et al. Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. Opt. Express, 18, 22358-22363(2010).

    [7] X. S. Yao, L. Maleki. Dual microwave and optical oscillator. Opt. Lett., 22, 1867-1869(1997).

    [8] X. S. Yao et al. Dual-loop optoelectronic oscillator. Proc. IEEE Int. Freq. Control Symp. FCS ’98, 545-549(1998).

    [9] D. Eliyahu, L. Maleki. Tunable, ultralow phase noise YIG based optoelectronic oscillator. Proc. IEEE MTT-S Int. Microwave Symp. Digest, 2185-2187(2003).

    [10] L. Huo et al. Clock extraction using an optoelectronic oscillator from high-speed NRZ signal and NRZ-to-RZ format transformation. IEEE Photonics Technol. Lett., 15, 981-983(2003).

    [11] W. Zhou, G. Blasche. Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level. IEEE Trans. Microwave Theory Tech., 53, 929-933(2005).

    [12] T. Sakamoto, T. Kawanishi, M. Izutsu. Optoelectronic oscillator using push-pull Mach–Zehnder modulator biased at null point for optical two-tone signal generation, 877-879(2005).

    [13] T. Sakamoto, T. Kawanishi, M. Izutsu. Optoelectronic oscillator using a LiNbO3 phase modulator for self-oscillating frequency comb generation. Opt. Lett., 31, 811-813(2006). https://doi.org/10.1364/OL.31.000811

    [14] Y. K. Chembo et al. Dynamic instabilities of microwaves generated with optoelectronic oscillators. Opt. Lett., 32, 2571-2573(2007).

    [15] V. J. Urick et al. Channelisation of radio-frequency signals using optoelectronic oscillator. Electron. Lett., 45, 1242-1244(2009).

    [16] L. D. Nguyen, K. Nakatani, B. Journet. Refractive index measurement by using an optoelectronic oscillator. IEEE Photonics Technol. Lett., 22, 857-859(2010).

    [17] D. Zhu, S. Pan, D. Ben. Tunable frequency-quadrupling dual-loop optoelectronic oscillator. IEEE Photonics Technol. Lett., 24, 194-196(2012).

    [18] M. Li et al. Femtometer-resolution wavelength interrogation using an optoelectronic oscillator, 298-299(2012).

    [19] W. Li, F. Kong, J. Yao. Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator. J. Lightwave Technol., 31, 3780-3786(2013).

    [20] T. Hao et al. Breaking the limitation of mode building time in an optoelectronic oscillator. Nat. Commun., 9, 1839(2018).

    [21] Y. Liu et al. Observation of parity-time symmetry in microwave photonics. Light Sci. Appl., 7, 38(2018).

    [22] J. Zhang, J. P. Yao. Parity-time symmetric optoelectronic oscillator. Sci. Adv., 4, eaar6782(2018).

    [23] J. Tang et al. An integrated optoelectronic oscillator, 1-4(2017).

    [24] W. Zhang, J. P. Yao. A silicon photonic integrated frequency-tunable optoelectronic oscillator, 1-4(2017).

    [25] X. S. Yao, L. Davis, L. Maleki. Coupled optoelectronic oscillators for generating both RF signal and optical pulses. J. Lightwave Technol., 18, 73-78(2000).

    [26] J. Lasri et al. Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (100 GHz or higher) optical pulses. Opt. Exp., 11, 1430-1435(2003).

    [27] D. Dahan, E. Shumakher, G. Eisenstein. Self-starting ultralow-jitter pulse source based on coupled optoelectronic oscillators with all intracavity fiber parametric amplifier. Opt. Lett., 30, 1623-1625(2005).

    [28] C. Williams et al. Noise characterization of an injection-locked COEO with long-term stabilization. J. Lightwave Technol., 29, 2906-2912(2011).

    [29] X. S. Yao, L. Maleki. Multiloop optoelectronic oscillator. IEEE J. Quantum Electron., 36, 79-84(2000).

    [30] T. Bánky, B. Horváth, T. Berceli. Optimum configuration of multiloop optoelectronic oscillators. J. Opt. Soc. Am. B, 23, 1371-1380(2006).

    [31] T. Berceli, T. Bánky, B. Horváth. Opto-electronic generation of stable and low noise microwave signals. IEE Proc. Optoelectron., 153, 119-127(2006).

    [32] J. Yang et al. An optical domain combined dual-loop optoelectronic oscillator. IEEE Photonics Technol. Lett., 19, 807-809(2007).

    [33] E. Shumakher, G. Eisenstein. A novel multiloop optoelectronic oscillator. IEEE Photonics Technol. Lett., 20, 1881-1883(2008).

    [34] X. Liu et al. A reconfigurable optoelectronic oscillator based on cascaded coherence-controllable recirculating delay lines. Opt. Express, 20, 13296-13301(2012).

    [35] S. Jia et al. A novel optoelectronic oscillator based on wavelength multiplexing. IEEE Photonics Technol. Lett., 27, 213-216(2014).

    [36] K. H. Lee, J. Y. Kim, W. Y. Choi. Injection-locked hybrid optoelectronic oscillators for single-mode oscillation. IEEE Photonics Technol. Lett., 20, 1645-1647(2008).

    [37] Z. Q. Fan et al. Tunable low-drift spurious-free optoelectronic oscillator based on injection locking and time delay compensation. Opt. Lett., 44, 534-537(2019).

    [38] E. Shumakher, S. Ó Dúill, G. Eisenstein. Optoelectronic oscillator tunable by an SOA based slow light element. J. Lightwave Technol., 27, 4063-4068(2009).

    [39] S. Pan, J. P. Yao. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry–Perot laser diode with external optical injection. Opt. Lett., 35, 1911-1913(2010).

    [40] W. Li, J. P. Yao. An optically tunable optoelectronic oscillator. J. Lightwave Technol., 28, 2640-2645(2010).

    [41] M. Li, W. Li, J. P. Yao. Tunable optoelectronic oscillator incorporating a high-Q spectrum-sliced photonic microwave transversal filter. IEEE Photonics Technol. Lett., 24, 1251-1253(2012).

    [42] Z. Tang et al. Tunable optoelectronic oscillator based on a polarization modulator and a chirped FBG. IEEE Photonics Technol. Lett., 24, 1487-1489(2012).

    [43] W. Li, J. P. Yao. Wideband frequency-tunable optoelectronic oscillator incorporating a tunable microwave-photonic filter based on phase-modulation to intensity modulation conversion using a phase-shifted fiber-Bragg grating. IEEE Trans. Microwave Theory Tech., 60, 1735-1742(2012).

    [44] B. Yang et al. A wideband frequency-tunable optoelectronic oscillator based on a narrowband phase-shifted FBG and wavelength tuning of laser. IEEE Photonics Technol. Lett., 24, 73-75(2012).

    [45] F. Jiang et al. An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter. Opt. Express, 21, 16381-16389(2013).

    [46] X. Xie et al. Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. Opt. Lett., 38, 655-657(2013).

    [47] H. Peng et al. Tunable DC-60 GHz RF generation utilizing a dual-loop optoelectronic oscillator based on stimulated Brillouin scattering. J. Lightwave Technol., 33, 2707-2715(2015).

    [48] H. Peng et al. Wideband tunable optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. Opt. Express, 25, 10287-10305(2017).

    [49] H. T. Tang et al. Wideband tunable optoelectronic oscillator based on a microwave photonic filter with an ultranarrow passband. Opt. Lett., 43, 2328-2331(2018).

    [50] M. Y. Shi et al. Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering. Opt. Express, 26, 16113-16124(2018).

    [51] Z. Zeng et al. Stable and finely tunable optoelectronic oscillator based on stimulated Brillouin scattering and an electro-optic frequency shift. Appl. Opt., 59, 589-594(2020).

    [52] M. Shin, V. S. Grigoryan, P. Kumar. Frequency-doubling optoelectronic oscillator for generating high-frequency microwave signals with low phase noise. Electron. Lett., 43, 242-244(2007).

    [53] S. L. Pan, J. P. Yao. A frequency-doubling optoelectronic oscillator using a polarization modulator. IEEE Photonics Technol. Lett., 21, 929-931(2009).

    [54] L. X. Wang et al. A frequency-doubling optoelectronic oscillator based on a dual-parallel Mach–Zehnder modulator and a chirped fiber Bragg grating. IEEE Photonics Technol. Lett., 23, 1688-1690(2011).

    [55] W. Li, J. P. Yao. An optically tunable frequency-multiplying optoelectronic oscillator. IEEE Photonics Technol. Lett., 24, 812-814(2012).

    [56] X. Liu et al. Frequency-doubling optoelectronic oscillator using DSB-SC modulation and carrier recovery based on stimulated Brillouin scattering. IEEE Photonics J., 5, 6600606(2013).

    [57] W. Li, J. G. Liu, N. H. Zhu. A widely and continuously tunable frequency doubling optoelectronic oscillator. IEEE Photonics Technol. Lett., 27, 1461-1464(2015).

    [58] C. Li et al. Frequency-sextupling optoelectronic oscillator using a Mach–Zehnder interferometer and a FBG. IEEE Photonics Technol. Lett., 28, 1356-1359(2016).

    [59] Y. K. Chembo, L. Larger, P. Colet. Nonlinear dynamics and spectral stability of optoelectronic microwave oscillators. IEEE J. Quantum Electron., 44, 858-866(2008).

    [60] M. Peil et al. Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. Phys. Rev. E, 79, 026208(2009).

    [61] K. Callan et al. Broadband chaos generated by an opto-electronic oscillator. Phys. Rev. Lett., 104, 113901(2010).

    [62] B. Romeira et al. Broadband chaotic signals and breather oscillations in an optoelectronic oscillator incorporating a microwave photonic filter. J. Lightwave Technol., 32, 3933-3942(2014).

    [63] Y. K. Chembo et al. Optoelectronic oscillators with time-delayed feedback. Rev. Mod. Phys., 91, 035006(2019).

    [64] J. Lasri et al. A self-starting hybrid optoelectronic oscillator generating ultra low jitter 10-GHz optical pulses and low phase noise electrical signals. IEEE Photonics Technol. Lett., 14, 1004-1006(2002).

    [65] P. Devgan et al. An optoelectronic oscillator using an 850-nm VCSEL for generating low jitter optical pulses. IEEE Photonics Technol. Lett., 18, 685-687(2006).

    [66] Y. K. Chembo et al. Generation of ultralow jitter optical pulses using optoelectronic oscillators with time-lens soliton-assisted compression. J. Lightwave Technol., 27, 5160-5167(2009).

    [67] N. Huang et al. Optical pulse generation based on an optoelectronic oscillator with cascaded nonlinear semiconductor optical amplifiers. IEEE Photonics J., 6, 5500208(2014).

    [68] P. Zhou et al. Optical pulse generation by an optoelectronic oscillator with optically injected semiconductor laser. IEEE Photonics. Technol. Lett., 28, 1827-1830(2016).

    [69] W. Li et al. Generation of flat optical frequency comb using a single polarization modulator and a Brillouin-assisted power equalizer. IEEE Photonics J., 6, 7900908(2014).

    [70] X. Xie et al. Low-noise and broadband optical frequency comb generation based on an optoelectronic oscillator. Opt. Lett., 39, 785-788(2014).

    [71] Z. Xie et al. Tunable ultraflat optical frequency comb generator based on optoelectronic oscillator using dual-parallel Mach–Zehnder modulator. Opt. Eng., 56, 066115(2017).

    [72] W. Li, J. Yao. Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop. J. Lightwave Technol., 32, 3573-3579(2014).

    [73] W. Y. Wang et al. Triangular microwave waveforms generation based on an optoelectronic oscillator. IEEE Photonics Technol. Lett., 27, 522-525(2015).

    [74] F. Zhang et al. Triangular pulse generation by polarization multiplexed optoelectronic oscillator. IEEE Photonics Technol. Lett., 28, 1645-1648(2016).

    [75] X. S. Yao, G. Lutes. A high-speed photonic clock and carrier recovery device. IEEE Photonics Technol. Lett., 8, 688-690(1996).

    [76] J. Lasri et al. Multiwavelength NRZ-to-RZ conversion with significant timing-jitter suppression and SNR improvement. Optics Commun., 240, 293-298(2004).

    [77] S. L. Pan, J. P. Yao. Multichannel optical signal processing in NRZ systems based on a frequency-doubling optoelectronic oscillator. IEEE J. Sel. Top. Quantum Electron., 16, 1460-1468(2010).

    [78] F. Kong, W. Li, J. P. Yao. Transverse load sensing based on a dual-frequency optoelectronic oscillator. Opt. Lett., 38, 2611-2613(2013).

    [79] O. Okusaga et al. The OEO as an acoustic sensor, 66-68(2013).

    [80] T. Zhang et al. Improving accuracy of distance measurements based on an optoelectronic oscillator by measuring variation of fiber delay. Appl. Opt., 52, 3495-3499(2013).

    [81] C. H. Lee, S. H. Yim. Optoelectronic oscillator for a measurement of acoustic velocity in acousto-optic device. Opt. Express, 22, 13634-13640(2014).

    [82] F. Kong et al. A dual-wavelength fiber ring laser incorporating an injection-coupled optoelectronic oscillator and its application to transverse load sensing. J. Lightwave Technol., 32, 1784-1793(2014).

    [83] Y. Zhu et al. High-sensitivity temperature sensor based on an optoelectronic oscillator. Appl. Opt., 53, 5084-5087(2014).

    [84] S. Zhang, H. Chen, H. Fu. Fiber-optic temperature sensor using an optoelectronic oscillator, 1-3(2015).

    [85] Y. Wang, J. Zhang, J. Yao. An optoelectronic oscillator for high sensitivity temperature sensing. IEEE Photonics Technol. Lett., 28, 1458-1461(2016).

    [86] S. Chew et al. Optoelectronic oscillator based sensor using an on-chip sensing probe. IEEE Photonics J., 9, 5500809(2017).

    [87] P. S. Devgan et al. Detecting low-power RF signals using a multimode optoelectronic oscillator and integrated optical filter. IEEE Photonics Technol. Lett., 22, 152-154(2010).

    [88] Y. Shao et al. RF signal detection by a tunable optoelectronic oscillator based on a PS-FBG. Opt. Lett., 43, 1199-1202(2018).

    [89] G. Wang et al. Detection of wideband low-power RF signals using a stimulated Brillouin scattering-based optoelectronic oscillator. Opt. Commun., 439, 133-136(2019).

    [90] Z. Zhu et al. Highly sensitive broadband microwave frequency identification using a chip-based Brillouin optoelectronic oscillator. Opt. Express, 27, 12855-12868(2019).

    [91] Y. Shao et al. Low-power RF signal detection using a high-gain tunable OEO based on equivalent phase modulation. J. Lightwave Technol., 37, 5370-5379(2019).

    [92] L. Maleki. Optoelectronic oscillators for microwave and mm-wave generation, 1-5(2017).

    [93] T. Hao et al. Toward monolithic integration of OEOs: from systems to chips. J. Lightwave Technol., 36, 4565-4582(2018).

    [94] X. Zou et al. Optoelectronic oscillators (OEOs) to sensing, measurement, and detection. IEEE J. Quantum Electron., 52, 0601116(2016).

    [95] J. Yao. Optoelectronic oscillators for high speed and high resolution optical sensing. J. Lightwave Technol., 35, 3489-3497(2017).

    [96] P. Devgan. A review of optoelectronic oscillators for high speed signal processing applications. ISRN Electron., 2013, 401969(2013).

    [97] Q. Cen et al. Rapidly and continuously frequency-scanning opto-electronic oscillator. Opt. Express, 25, 635-643(2017).

    [98] T. Hao et al. Tunable Fourier domain mode locked optoelectronic oscillator using stimulated Brillouin scattering. IEEE Photonics Technol. Lett., 30, 1842-1845(2018).

    [99] T. Hao et al. Fourier domain mode locked optoelectronic oscillator based on the deamplification of stimulated Brillouin scattering. OSA Continuum, 1, 408-415(2018).

    [100] T. Hao et al. Harmonically Fourier domain mode-locked optoelectronic oscillator. IEEE Photonics Technol. Lett., 31, 427-430(2019).

    [101] R. Liu et al. Generating ultra-wideband LFM waveforms with large time duration based on frequency-sweeping optoelectronic oscillation, 1-3(2019).

    [102] T. Hao et al. Dual-chirp Fourier domain mode-locked optoelectronic oscillator. Opt. Lett., 44, 1912-1915(2019).

    [103] R. Liu et al. Simultaneous generation of ultra-wideband LFM and phase-coded LFM microwave waveforms based on an improved frequency-sweeping OEO. Opt. Commun., 459, 124938(2020).

    [104] S. Zhu et al. Polarization manipulated Fourier domain mode-locked optoelectronic oscillator. J. Lightwave Technol.(2020).

    [105] Z. Zeng et al. Frequency-definable linearly chirped microwave waveform generation by a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. Opt. Express, 28, 13861-13870(2020).

    [106] L. Zhang et al. Frequency-sweep-range-reconfigurable complementary linearly chirped microwave waveform pair generation by using a Fourier domain mode locking optoelectronic oscillator based on stimulated Brillouin scattering. IEEE Photonics J., 12, 5501010(2020).

    [107] X. Zhang et al. Novel RF-source-free reconfigurable microwave photonic radar. Opt. Express, 28, 13650-13661(2020).

    [108] T. Hao et al. Microwave photonics frequency-to-time mapping based on a Fourier domain mode locked optoelectronic oscillator. Opt. Express, 26, 33582-33591(2018).

    [109] T. Hao et al. Multiple-frequency measurement based on a Fourier domain mode-locked optoelectronic oscillator operating around oscillation threshold. Opt. Lett., 44, 3062-3065(2019).

    [110] L. Li et al. A parity-time-symmetric optoelectronic oscillator based on dual-wavelength carriers in a single spatial optoelectronic loop, 1-4(2019).

    [111] Z. Fan et al. Hybrid frequency-tunable parity-time-symmetric optoelectronic oscillator. J. Lightwave Technol., 38, 2127-2133(2020).

    [112] Z. Dai et al. Frequency-tunable parity-time-symmetric optoelectronic oscillator using a polarization-dependent Sagnac loop, Th1C.3(2020).

    [113] C. Teng et al. Widely tunable parity-time symmetric optoelectronic oscillator based on a polarization modulator, 1-4(2019).

    [114] C. Teng et al. Fine tunable PT-symmetric optoelectronic oscillator based on laser wavelength tuning. IEEE Photonics Technol. Lett., 32, 47-50(2020).

    [115] J. Tang et al. Integrated optoelectronic oscillator. Opt. Express, 26, 12257-12265(2018).

    [116] W. Zhang, J. P. Yao. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. J. Lightwave Technol., 36, 4655-4663(2018).

    [117] Z. Xuan, L. Du, F. Aflatouni. Frequency locking of semiconductor lasers to RF oscillators using hybrid-integrated opto-electronic oscillators with dispersive delay lines. Opt. Express, 27, 10729-10737(2019).

    [118] M. Merklein et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett., 41, 4633-4636(2016).

    [119] L. Nielsen, M. Heck. A computationally efficient integrated coupled opto-electronic oscillator model. J. Lightwave Technol.(2020).

    [120] P.T. Do et al. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep., 10, 6982(2020).

    [121] N. Zhu et al. Directly modulated semiconductor laser. IEEE J. Sel. Top. Quantum Electron., 24, 1-19(2018).

    [122] X. S. Yao. Phase to amplitude modulation conversion using Brillouin selective sideband amplification. IEEE Photonics Technol. Lett., 10, 264-266(1998).

    [123] W. Li, M. Li, J. Yao. A narrow-passband and frequency-tunable microwave photonic filter based on phase-modulation to intensity-modulation conversion using a phase-shifted fiber Bragg grating. IEEE Trans. Microwave Theory Tech., 60, 1287-1296(2012).

    [124] N. Shi et al. A reconfigurable microwave photonic filter with flexible tunability using a multi-wavelength laser and a multi-channel phase-shifted fiber Bragg grating. Opt. Commun., 407, 27-32(2018).

    [125] X. Zou et al. Photonics for microwave measurements. Laser Photonics Rev., 10, 711-734(2016).

    [126] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave Technol., 35, 3498-3513(2017).

    [127] C. M. Bender, S. Boettcher. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett., 80, 5243-5246(1998).

    [128] N. Hatano, D. R. Nelson. Localization transitions in non-Hermitian quantum mechanics. Phys. Rev. Lett., 77, 570-573(1996).

    [129] C. Zheng, L. Hao, G. L. Long. Observation of a fast evolution in a parity-time-symmetric system. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 371, 20120053(2013).

    [130] L. Feng, R. El-Ganainy, L. Ge. Non-Hermitian photonics based on parity–time symmetry. Nat. Photonics, 11, 752-762(2017).

    [131] H. Hodaei et al. Parity-time–symmetric microring lasers. Science, 346, 975-978(2014).

    [132] L. Feng et al. Single-mode laser by parity-time symmetry breaking. Science, 346, 972-975(2014).

    [133] W. Liu et al. An integrated parity-time symmetric wavelength-tunable single-mode microring laser. Nat. Commun., 8, 15389(2017).

    [134] L. Chang et al. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [135] B. Peng et al. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [136] J. Schindler et al. Experimental study of active LRC circuits with PT symmetries. Phys. Rev. A, 84, 040101(2011).

    [137] D. Marpaung, J. Yao, J. Capmany. Integrated microwave photonics. Nat. Photonics, 13, 80-90(2019).

    [138] G. de Valincourt et al. Photonic integrated circuit based on hybrid III-V/silicon integration. J. Lightwave Technol., 36, 265-273(2018).

    [139] M. Smit et al. An introduction to InP-based generic integration technology. Semicond. Sci. Technol., 29, 083001(2014).

    [140] D. Thomson et al. Roadmap on silicon photonics. J. Opt., 18, 073003(2016).

    [141] W. Zhang, J. Yao. Silicon-based integrated microwave photonics. IEEE J. Quantum Electron., 52, 0600412(2016).

    [142] , C. Koos, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 4, 535-544(2010).

    [143] D. J. Moss et al. New CMOS compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [144] H. Park et al. Heterogeneous silicon nitride photonics. Optica, 7, 336-337(2020).

    [145] Q. Yu et al. Heterogeneous photodiodes on silicon nitride waveguides with 20 GHz bandwidth, W4G.1(2020).

    [146] C. H. G. Roeloffzen et al. Silicon nitride microwave photonic circuits. Opt. Express, 21, 22937-22961(2013).

    [147] D. Liu et al. Large-capacity and low-loss integrated optical buffer. Opt. Express, 27, 11585-11593(2019).

    [148] W. Liu et al. A fully reconfigurable photonic integrated signal processor. Nat. Photonics, 10, 190-195(2016).

    [149] M. Li et al. Photonic integration circuits in China. IEEE J. Quantum Electron., 52, 0601017(2016).

    [150] M. Li et al. Recent progresses on optical arbitrary waveform generation. Front. Optoelectron., 7, 359-375(2014).

    [151] N. Shi et al. Dual-functional transmitter for simultaneous RF/LFM signal using a monolithic integrated DFB array. IEEE Photonics Technol. Lett., 32, 239-242(2020).

    [152] Q. Song et al. Monolithic integrated 4×25  Gb/s transmitter optical subassembly at 1.55  <. Opt. Commun., 441, 160-164(2019). https://doi.org/10.1016/j.optcom.2019.02.056

    [153] M. Burla et al. Integrated waveguide Bragg gratings for microwave photonics signal processing. Opt. Express, 21, 25120-25147(2013).

    [154] T. Hao et al. Optoelectronic parametric oscillator. Light Sci. Appl., 9, 102(2020).

    [155] J. F. Bauters et al. Planar waveguides with less than 0.1  dB/m propagation loss fabricated with wafer bonding. Opt. Express, 19, 24090-24101(2011). https://doi.org/10.1364/OE.19.024090

    [156] J. F. Bauters et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. Express, 19, 3163-3174(2011). https://doi.org/10.1364/OE.19.003163

    [157] C. Xiang et al. Low-loss continuously tunable optical true time delay based on Si3N4 ring resonators. IEEE J. Sel. Top. Quantum Electron., 24, 5500109(2018). https://doi.org/10.1109/JSTQE.2017.2785962

    [158] J. J. G. M. van der Tol et al. InP membrane on silicon (IMOS) photonics. IEEE J. Quantum Electron., 56, 6300107(2020).

    [159] F. Kish et al. System-on-chip photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron., 24, 6100120(2018).

    [160] Z. Zhou, B. Yin, J. Michel. On-chip light sources for silicon photonics. Light Sci. Appl., 4, e358(2015).

    [161] E. M. T. Fadaly et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature, 580, 205-209(2020).

    CLP Journals

    [1] Yuansheng Tao, Haowen Shu, Xingjun Wang, Ming Jin, Zihan Tao, Fenghe Yang, Jingbo Shi, Jun Qin. Hybrid-integrated high-performance microwave photonic filter with switchable response[J]. Photonics Research, 2021, 9(8): 1569

    Tengfei Hao, Yanzhong Liu, Jian Tang, Qizhuang Cen, Wei Li, Ninghua Zhu, Yitang Dai, José Capmany, Jianping Yao, Ming Li. Recent advances in optoelectronic oscillators[J]. Advanced Photonics, 2020, 2(4): 044001
    Download Citation