• Acta Optica Sinica
  • Vol. 40, Issue 4, 0429001 (2020)
Xiayiding Yakupu1、2, Paerhatijiang Tuersun1、2、*, and Panpan Wu1、2
Author Affiliations
  • 1School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
  • 2Key Laboratory of Novel Light Source and Micro/Nano-Optics, Xinjiang Normal University, Urumqi, Xinjiang 830054, China
  • show less
    DOI: 10.3788/AOS202040.0429001 Cite this Article Set citation alerts
    Xiayiding Yakupu, Paerhatijiang Tuersun, Panpan Wu. Optimization of Light Absorption and Scattering Properties of Gold Nanospheroids[J]. Acta Optica Sinica, 2020, 40(4): 0429001 Copy Citation Text show less
    References

    [1] Špringer T, Chadtová Song X, Ermini M L et al. Functional gold nanoparticles for optical affinity biosensing[J]. Analytical and Bioanalytical Chemistry, 409, 4087-4097(2017).

    [2] Liang G H, Xing D. Progress in organic nanomaterials for laser-induced photothermal therapy of tumor[J]. Chinese Journal of Lasers, 45, 0207020(2018).

    [3] Kaya S I, Kurbanoglu S, Ozkan S A. Nanomaterials-based nanosensors for the simultaneous electrochemical determination of biologically important compounds: ascorbic acid, uric acid, and dopamine[J]. Critical Reviews in Analytical Chemistry, 49, 101-125(2019).

    [4] Starowicz Z, Kędra A, Berent K et al. Influence of Ag nanoparticles microstructure on their optical and plasmonic properties for photovoltaic applications[J]. Solar Energy, 158, 610-616(2017).

    [5] Pan J Y, Chen J, Zhao D W et al. Surface plasmon-enhanced quantum dot light-emitting diodes by incorporating gold nanoparticles[J]. Optics Express, 24, A33-A43(2016).

    [6] Yang D, Nie Z Q, Zhai A P et al. Surface-enhancedRaman scattering performances of GO/AuNRs composite substrates excited by radially polarized light[J]. Acta Optica Sinica, 39, 0630003(2019).

    [7] Xia H W, Gao Y J, Yin L et al. Light-triggered covalent coupling of gold nanoparticles for photothermal cancer therapy[J]. ChemBio Chem, 20, 667-671(2019).

    [8] Suzuka H, Mimura A, Inaoka Y et al. Magnetic nanoparticles in macrophages and cancer cells exhibit different signal behavior on magnetic particle imaging[J]. Journal of Nanoscience and Nanotechnology, 19, 6857-6865(2019).

    [9] Wang H, Zhao R F, Li Y Y et al. Aspect ratios of gold nanoshell capsules mediated melanoma ablation by synergistic photothermal therapy and chemotherapy[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 439-448(2016).

    [10] Guan Q Q, Wang C N, Wu D et al. Cerasome-based gold-nanoshell encapsulating L-menthol for ultrasound contrast imaging and photothermal therapy of cancer[J]. Nanotechnology, 30, 015101(2019).

    [11] Coughlin A J, Ananta J S, Deng N F et al. Gadolinium-conjugated gold nanoshells for multimodal diagnostic imaging and photothermal cancer therapy[J]. Small, 10, 556-565(2014).

    [12] Tuersun P, Han X E. Optimal dimensions of gold nanoshells for light backscattering and absorption based applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 146, 468-474(2014).

    [13] Myroshnychenko V. Rodríguez-FernándezJ, Pastoriza-SantosI, et al. Modelling the optical response of gold nanoparticles[J]. Chemical Society Reviews, 37, 1792-1805(2008).

    [14] Khlebtsov N G. T-matrix method in plasmonics: an overview[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 123, 184-217(2013).

    [15] Barnes L. Comparing experiment and theory in plasmonics[J]. Journal of Optics A: Pure and Applied Optics, 11, 114002(2009).

    [16] McCall S L, Platzman P M, Wolff P A. Surface enhanced Raman scattering[J]. Physics Letters A, 77, 381-383(1980).

    [17] Anderson L J E, Mayer K M, Fraleigh R D et al. Quantitative measurements of individual gold nanoparticle scattering cross sections[J]. The Journal of Physical Chemistry C, 114, 11127-11132(2010).

    [18] Mishchenko M I. Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength[J]. Applied Optics, 32, 4652-4666(1993).

    [19] Lin A W H, Lewinski N A, West J L et al. Optically tunable nanoparticle contrast agents for early cancer detection: model-based analysis of gold nanoshells[J]. Journal of Biomedical Optics, 10, 064035(2005).

    [20] Kreibig U, Vollmer M. Optical properties of metal clusters[M]. Berlin: Springer, 297-337(1995).

    [21] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 6, 4370-4379(1972).

    [22] Elazar J M et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 37, 5271-5283(1998).

    [23] Averitt R D, Westcott S L, Halas N J. Linear optical properties of gold nanoshells[J]. Journal of the Optical Society of America B, 16, 1824-1832(1999).

    CLP Journals

    [1] Juntong Zhan, Su Zhang, Qiang Fu, Jin Duan, Yingchao Li. Effect of aspheric particles on laser polarization characteristics[J]. Infrared and Laser Engineering, 2020, 49(11): 20200150

    Xiayiding Yakupu, Paerhatijiang Tuersun, Panpan Wu. Optimization of Light Absorption and Scattering Properties of Gold Nanospheroids[J]. Acta Optica Sinica, 2020, 40(4): 0429001
    Download Citation