• Laser & Optoelectronics Progress
  • Vol. 55, Issue 1, 11412 (2018)
Chen Jimin*, Zhang Chengyu, Zeng Yong, and Xu Yangli
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.011412 Cite this Article Set citation alerts
    Chen Jimin, Zhang Chengyu, Zeng Yong, Xu Yangli. 3D Printing Technology in Orthopedics and Its Application[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11412 Copy Citation Text show less
    References

    [1] Chen J M, Jiang Y J, Li Y S. The application of digital medical 3D printing technology on tumor operation[C]. SPIE, 2016, 9738: 973816.

    [2] Jackson A, Ray L A, Dangi S, et al. 3D printing for orthopedic applications: from high resolution cone beam CT images to life size physical models[C]. SPIE, 2017, 10138: 101380T.

    [3] Kola M Z, Shah A H, Klialil U S, et al. Surgical templates for dental implant positioning; current knowledge and clinical perspectives[J]. Nigerian Journal of Surgery, 2015, 21(1): 1-5.

    [4] Homer K, O′Malley L, Taylor K, et al. Guidelines for clinical use of CBCT: a review[J]. Dentomaxillofac Radiol, 2015, 44(1): 20140225.

    [5] Yu D, Liu J H, Zhu H Y, et al. Application of three-dimensional printing technique in repair and reconstruction of maxillofacial bone defect[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(3): 292-295.

    [6] Xia D L. The experimental and clinical study of prefabricated, individulized titanium alloy implant for the reconstruction of cranial defect based on computer data and rapid prototyping technique[D]. Beijing: Chinese Academy of Medical Sciences Peking Union Medical College, 2004.

    [7] Sun J. Repair and reconstruction of maxillary bone defect[J]. Journal of Oral and Maxillofacial Surgery, 2005, 15(1): 5-8.

    [8] Pang J Y, Zhao Y, Xiao Y L, et al. Application of three-dimensional printing technology in spinal surgery[J]. Chinese Journal of Tissue Engineering Research, 2016, 22(4): 577-580.

    [10] Zhang Q, Zhao L S, Yuan Z. Application of the pedicle drill template navigation technology in the operation of complicated lumbar spine disease[J]. Chinese Journal of Clinicians (Electronic Edition) , 2013, 7(24): 262-264.

    [11] Schneider D, Marquardt P, Zwalilen M, et al. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry[J]. Clinical Oral Implants Research, 2009, 20 (s4): 73-86.

    [12] Eggers G, Patellis E, Mühling J. Accuracy of template-based dental implant placement[J]. The International Journal of Oral & Maxillofacial Implants, 2009, 24(3): 447-454.

    [13] Pettersson A, Komiyama A, Hultin M, et al. Accuracy of virtually planned and template guided implant surgery on edentate patients[J]. Clinical Implant Dentistry and Related Research, 2012, 14(4): 527-537.

    [14] Daniel W, Eidson R, Rudek I, et al. In-office fabrication of dental implant surgical guides using desktop stereolithographic printing and implant treatment planning software: a clinical report[J]. The Journal of Prosthetic Dentistry, 2017, 118(3): 256-263.

    [15] Fu J, Guo Z, Wang Z, et al. Use of four kinds of three-dimensional printing guide plate in bone tumor resection and reconstruction operation[J]. Chinese Journal of Reparative and Reconstructive Surgery, 2014, 28(3): 304-308.

    [16] He J Y, Dong X P, Shu Y, et al. The finite element analysis of protection for lumbar spine protector[J]. Orthopedic Journal of China, 2015, 23(6): 548-555.

    [17] Hollander D A, Wirtz T, Walter M V, et al. Development of individual three-dimensional bone substitutes using selective laser melting[J]. European Journal of Trauma, 2003, 29(4): 228-234.

    [18] Kanazawa M, Iwaki M, Minakuchi S, et al. Fabrication of titanium alloy frameworks for complete dentures by selective laser melting[J]. The Journal of Prosthetic Dentistry, 2014, 112(6): 1441-1447.

    [19] Edwards P, Ramulu M. Fatigue performance evaluation of selective laser melted Ti6Al4V[J]. Materials Science and Engineering A, 2014, 598: 327-337.

    [20] Aziz I A. Microstructure and mechanical properties of Ti-6A1-4V produced by selective laser sintering of pre-alloyed powders[D]. Hamilton: The University of Waikato, 2010.

    [21] Murr L E, Quinones S A, Gaytan S M, et al. Microstructure and mechanical behavior of Ti-6A1-4V produced by rapid-layer manufacturing for biomedical applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(1): 20-32.

    [22] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Journal, 2007, 13(4): 196-203.

    [23] Yang Y Q, Song C H, Wang D. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering, 2014, 50(21): 140-151.

    [24] Zhang S, Gui R Z, Wei Q S, et al. Cracking behavior and formation mechanism of TC4 alloy formed by selective laser melting[J]. Journal of Mechanical Engineering, 2013, 49(23): 21-27.

    [25] Zou D X, Wang Z M, Guo H M, et al. Bond strengths of customized titanium brackets manufactured by selective laser melting[J]. Chinese Journal of Stomatology, 2013, 48(7): 419-422.

    [26] Zhang Q F, Liu G, Liu G Q. Design, manufacture and application of individual mandible titanium alloy implant based on three dimensional printing[J]. Journal of Oral Science Research, 2015, 31(1): 48-51.

    [27] Wu J, Gao B, Tan H, et al. Titanium base of complete denture fabricated with laser rapid forming[J]. Chinese Journal of Lasers, 2006, 33(8): 1139-1142.

    [28] Wang Z, Teng Y, Li D C, et al. Fabrication of custom-made artificial semi-knee joint based on rapid prototyping technique: computer-assisted design and manufacturing[J]. Chinese Reparative and Reconstructive Surgery, 2004, 18(5): 347-351.

    [29] Tang Z H, Lu H, Cao M X, et al. Mandibular bone reconstruction semi-cylindrical dental implants in patients with the clinical efficacy of alveolar ridge atrophy[J]. Journal of Peking University (Health Sciences) , 2010, 42(1): 94-97.

    [30] Parthasarathy J, Starly B, Raman S, et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(3): 249-259.

    Chen Jimin, Zhang Chengyu, Zeng Yong, Xu Yangli. 3D Printing Technology in Orthopedics and Its Application[J]. Laser & Optoelectronics Progress, 2018, 55(1): 11412
    Download Citation