• Laser & Optoelectronics Progress
  • Vol. 59, Issue 17, 1716005 (2022)
Hui Wang1、**, Liying Liu1、*, Zelin An1, and Ruzhi Wang2
Author Affiliations
  • 1Department of Science, Beijing University of Technology, Beijing 100124, China
  • 2Institute of New energy Materials and Devices, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • show less
    DOI: 10.3788/LOP202259.1716005 Cite this Article Set citation alerts
    Hui Wang, Liying Liu, Zelin An, Ruzhi Wang. High Performance Broadband Infrared Absorber Based on Multilayer Graphene[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716005 Copy Citation Text show less
    References

    [1] Sun Y, Wang Y Y, Zhang C et al. Flexible mid-infrared radiation modulator with multilayer graphene thin film by ionic liquid gating[J]. ACS Applied Materials & Interfaces, 11, 13538-13544(2019).

    [2] Sun B, Xie F F, Luo Y et al. Low-voltage controlling high order plasmonic modes based on graphene/metal electrodes[J]. Optics & Laser Technology, 136, 106775(2021).

    [3] Shiri J, Khalilzadeh J. Magnetically controllable transmission spectrum of a 1D photonic crystal with a graphene defect layer in infrared region[J]. Optical and Quantum Electronics, 52, 506(2020).

    [4] Yuan Z H, Xu Y, Cao B et al. Broadband transmission infrared light modulator based on graphene plasma[J]. Laser & Optoelectronics Progress, 57, 232301(2020).

    [5] Krishna A, Kim J M, Leem J et al. Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene[J]. Nano Letters, 19, 5086-5092(2019).

    [6] Zhao C X, Qie Y, Yu Y et al. Enhanced optical absorption of graphene by plasmon[J]. Acta Physica Sinica, 69, 067801(2020).

    [7] Kumar A, Singh P, Thapa K B. Study of super absorption properties of 1D graphene and dielectric photonic crystal for novel applications[J]. Optical and Quantum Electronics, 52, 423(2020).

    [8] Wu J J, Zhao H X, Gao J X. Enhancing light absorption of graphene using magneto-optical photonic crystals[J]. Chinese Journal of Lasers, 47, 0403003(2020).

    [9] Wang Y L, Liu S, Zhong S Y. Tunable multichannel terahertz filtering properties of dielectric defect layer in one-dimensional magnetized plasma photonic crystal[J]. Optics Communications, 473, 125985(2020).

    [10] Wang C S, Jiang D F, Jiang X W. Polarization independent high absorption efficiency wide absorption bandwidth metamaterial absorber[J]. Laser & Optoelectronics Progress, 57, 031601(2020).

    [11] Liu W W, Song Z Y, Wang W H. A high-performance broadband terahertz absorber based on multilayer graphene squares[J]. Physica Scripta, 96, 055504(2021).

    [12] Li H, Yu J, Chen Z. Polarization-independent and incident-angle-insensitive switchable broadband absorber/reflector based on single-layer graphene[J]. Chinese Journal of Lasers, 47, 0803001(2020).

    [13] Yi D, Wei X C, Xu Y L. Tunable microwave absorber based on patterned graphene[J]. IEEE Transactions on Microwave Theory and Techniques, 65, 2819-2826(2017).

    [14] Jiang X W, Wu H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica, 70, 027804(2021).

    [15] Lin H, Sturmberg B C P, Lin K T et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light[J]. Nature Photonics, 13, 270-276(2019).

    [16] Xue Z, Zhang H T, Yang M S et al. Study on tunable broad-spectrum terahertz absorber based on graphic graphene[J]. Laser & Optoelectronics Progress, 59, 0530002(2021).

    [17] Gusynin V P, Sharapov S G, Carbotte J P. Magneto-optical conductivity in graphene[J]. Journal of Physics: Condensed Matter, 19, 026222(2007).

    [18] Falkovsky L A, Varlamov A A. Space-time dispersion of graphene conductivity[J]. The European Physical Journal B, 56, 281-284(2007).

    [19] Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer[J]. Physical Review B, 76, 153410(2007).

    [20] Vakil A, Engheta N. Transformation optics using graphene[J]. Science, 332, 1291-1294(2011).

    [21] Al-Ghezi H, Gnawali R, Banerjee P P et al. 2 × 2 anisotropic transfer matrix approach for optical propagation in uniaxial transmission filter structures[J]. Optics Express, 28, 35761-35783(2020).

    [22] Niu Q L, Yan J H, Shen L F et al. Space-wave isolator based on remanence at microwave frequencies[J]. Optik, 227, 165531(2021).

    [23] Zhao L Y, Zhang R Y, Deng C Y et al. Tunable infrared emissivity in multilayer graphene by ionic liquid intercalation[J]. Nanomaterials, 9, 1096(2019).

    [24] Furchi M, Urich A, Pospischil A et al. Microcavity-integrated graphene photodetector[J]. Nano Letters, 12, 2773-2777(2012).

    [25] Kuzmenko A B, van Heumen E, Carbone F et al. Universal optical conductance of graphite[J]. Physical Review Letters, 100, 117401(2008).

    [26] Geim A K. Graphene: status and prospects[J]. Science, 324, 1530-1534(2009).

    [27] Bonaccorso F, Sun Z, Hasan T et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 4, 611-622(2010).

    [28] Smith D R, McCall S L, Platzman P M et al. Photonic band structure and defects in one and two dimensions[J]. Journal of the Optical Society of America B, 10, 314-321(1993).

    [29] Ding F, Dai J, Chen Y et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 6, 39445(2016).

    [30] Fang Y T, He S L. Transparent structure consisting of metamaterial layers and matching layers[J]. Physical Review A, 78, 023813(2008).

    Hui Wang, Liying Liu, Zelin An, Ruzhi Wang. High Performance Broadband Infrared Absorber Based on Multilayer Graphene[J]. Laser & Optoelectronics Progress, 2022, 59(17): 1716005
    Download Citation