• Acta Optica Sinica
  • Vol. 36, Issue 10, 1026004 (2016)
Dou Xiujie1、2、*, Min Changjun1、2, Zhang Yuquan1、2, and Yuan Xiaocong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201636.1026004 Cite this Article Set citation alerts
    Dou Xiujie, Min Changjun, Zhang Yuquan, Yuan Xiaocong. Surface Plasmon Polaritons Optical Tweezers Technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004 Copy Citation Text show less
    References

    [1] Ashkin A, Dziedzic J M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Opt Lett, 1986, 11(5): 288-290.

    [2] Ashkin A. History of optical trapping and manipulation of small-neutral particle, atoms, and molecules[J]. IEEE Journal on Selected Topics in Quantum Electronics, 2000, 6(6): 841-856.

    [4] Jonás A, Zemánek P. Light at work: the use of optical forces for particle manipulation, sorting, and analysis[J]. Electrophoresis, 2008, 29(24): 4813-4851.

    [5] Dienerowitz M, Mazilu M, Dholakia K. Optical manipulation of nanoparticles: a review[J]. Journal of Nanophotonics, 2008, 2(1): 021875.

    [6] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1-57.

    [7] Dholakia K, imár T. Shaping the future of manipulation[J]. Nat Photonics, 2011, 5: 335-342.

    [8] Padgett M, Bowman R. Tweezers with a twist[J]. Nat Photonics, 2011, 5: 343-348.

    [9] Huo Xin, Pan Shi, Sun Wei. Principles and development of laser trapping technique[J]. Optical Technique, 2006, 32(2): 311-315, 318.

    [10] Kawata S, Suguira T. Movement of micrometer-sized particles in the evanescent field of a laser beam[J]. Opt Lett, 1992, 17(11): 772-774.

    [11] Wang K Y, Zhen J, Huang W H. The possibility of trapping and manipulating a nanometer scale particle by the SNOM tip[J]. Opt Commun, 1998, 149(1-3): 38-42.

    [12] Chaumet P C, Rahmani A, Nieto-Vesperinas M. Optical trapping and manipulation of nano-objects with an apertureless probe[J]. Phys Rev Lett, 2002, 88(12): 123601.

    [13] Gu M, Haumonte J, Micheau Y, et al. Laser trapping and manipulation under focused evanescent wave illumination[J]. Appl Phys Lett, 2004, 84(21): 4236-4238.

    [14] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    [15] Maier S A. Plasmonics: fundamentals and applications[M]. New York: Springer Science+Business Media LLC, 2007.

    [16] Quidant R, Girard C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Review, 2008, 2(1-2): 47-57.

    [17] Wang K, Schonbrun E, Steinvurzel P, et al. Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film[J]. Nano Lett, 2009, 9(7): 2623-2629.

    [18] Righini M, Volpe G, Girard C, et al. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range[J]. Phys Rev Lett, 2008, 100(18): 186804.

    [19] Wang K, Corzier K B. Plasmonic trapping with a gold nanopillar[J]. Chem Phys Chem, 2012, 13(11): 2639-2648.

    [20] Kotnala A, Gordon R. Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer[J]. Nano Lett, 2014, 14(2): 853-856.

    [21] Yan Z J, Justin J E, Sweet J, et al. Three-dimensional optical trapping and manipulation of single silver nanowires[J]. Nano Lett, 2012, 12(10): 5155-5161.

    [22] Kotsifaki D G, Kandyla M, Lagoudakis P G. Plasmon enhanced optical tweezers with gold-coated black silicon[J]. Sci Rep, 2016, 6: 26275.

    [23] Kawata S. Near-field optics and surface plasmon polaritons[M]. Berlin: Springer Science & Business Media, 2001.

    [24] Raether H. Surface plasmons on smooth and rough surfaces and on gratings[M]. Berlin: Springer-Verlag, 1988.

    [25] Dykhne A M, Sarychev A K, Shalaev V M. Resonant transmittance through metal films with fabricated and light-induced modulation[J]. Phys Rev B, 2003, 67: 195402.

    [26] Otto A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift für Physik, 1968, 216(4): 398-410.

    [27] Kretschmann E, Raether H. Radiative decay of non radiative surface plasmons excited by light[J]. Znaturforsch für Naturforschung A, 1968, 23(12): 2135-2136.

    [28] Hecht B, Bielefeldt H, Novotny L, et al. Local excitation, scattering, and interference of surface plasmons[J]. Phys Rev Lett, 1996, 77(9): 1889-1892.

    [29] Hornauer D, Kapitza H, Raether H. The dispersion relation of surface plasmonson rough surfaces[J]. Journal of Physics D: Applied Physics, 1974, 7(9): L100-L102.

    [30] Nash D J, Cotter N P K, Wood E L, et al. Examination of the +1, -1 surface plasmon mini-gap on a gold grating[J]. Journal of Modern Optics, 1995, 42(1): 243-248.

    [31] Kano H, Mizuguchi S, Kawata S. Excitation of surface-plasmon polaritons by a focused laser beam[J]. Journal of the Optical Society of America B, 1998, 15(4): 1381-1386.

    [32] Moh K J, Yuan X C, Bu J, et al. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams[J]. Opt Express, 2008, 16(25): 20734-20741.

    [33] Moh K J, Yuan X C, Bu J, et al. Radial polarization induced surface plasmon virtual probe for two-photon fluorescence microscopy[J]. Opt Lett, 2009, 34(7): 971-973.

    [34] Zhan Q. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam[J]. Opt Lett, 2006, 31(11): 1726-1728.

    [35] Sato S, Harada Y, Waseda Y. Optical trapping of microscopic metal particles[J]. Opt Lett, 1994, 19(22): 1807-1809.

    [36] Ke P C, Gu M. Characterization of trapping force on metallic Mie particles[J]. Appl Opt, 1999, 38(1): 160-167.

    [37] Kaneta T, Ishidzu Y, Mishima N, et al. Theory of optical chromatography[J]. Anal chem, 1997, 69(14): 2701-2710.

    [38] Ren K F, Gréhan G, Gouesbet G. Prediction of reverse radiation pressure by generalized Lorenz-Mie theory[J]. Appl Opt, 1996, 35(15): 2702-2710.

    [39] Lock J A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mietheory. II. On-axis trapping force[J]. Appl Opt, 2004, 43(12): 2545-2554.

    [40] Lock J A. Calculation of the radiation trapping force for laser tweezers by use of generalized Lorenz-Mie theory. I. Localized model description of an on-axis tightly focused laser beam with spherical aberration[J]. Appl Optics, 2004, 43(12): 2532-2544.

    [41] Grehan G, Maheu B, Gouesbet G. Scattering of laser beams by Mie scatter centers: numerical results using a localized approximation[J]. Appl Opt, 1986, 25(19): 3539-3548.

    [42] Wright W H, Sonek G J, Berns M W. Parametric study of the forces on microspheres held by optical tweezers[J]. Appl Opt, 1994, 33(9): 1735-1748.

    [43] Chaumet P C, Nieto-Vesperinas M. Time-averaged total force on a dipolar sphere in an electromagnetic field[J]. Opt Lett, 2000, 25(15): 1065-1067.

    [44] Chaumet P C, Nieto-Vesperinas M. Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate[J]. Phys Rev B, 2000, 61(20): 14119-14127.

    [45] Chaumet P C, Nieto-Vesperinas M. Electromagnetic force on a metallic particle in the presence of a dielectric surface[J]. Phys Rev B, 2000, 62(16): 11185-11191.

    [46] Arias-Gonzalez J R, Nieto-Vesperinas M. Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions[J]. Journal of the Optical Society of America A, 2003, 20(7): 1201-1209.

    [47] Harada Y, Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime[J]. Opt Commun[J]. 1996, 124(5-6): 529-541.

    [48] Griffiths D J. Introduction to electrodynamics[M]. Upper Saddle River: Prentice Hall, 1999: 351-356.

    [49] Zhan Q. Trapping metallic Rayleigh particles with radial polarization[J]. Opt Express, 2004, 12(15): 3377-3382.

    [50] Quidant R, Girard C. Surface-plasmon-based optical manipulation[J]. Laser & Photonics Reviews, 2008, 2(1-2): 47-57.

    [51] Righini M, Zelenina A S, Girard C, et al. Parallel and selective trapping in a patterned plasmonic landscape[J]. Nat Phys, 2007, 3: 477-480.

    [52] Righini M, Volpe G, Girard C, et al. Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range[J]. Phys Rev Lett, 2008, 100(18): 183604.

    [53] Huang L, Maerkl S J, Martin O J F. Integration of plasmonic trapping in a microfluidic environment[J]. Opt Express, 2009, 17(8): 6018-6024.

    [54] Grigorenko A N, Roberts N W, Dickinson M R, et al. Nanometric optical tweezers based on nanostructured substrates[J]. Nat Photonics, 2008, 2: 365-370.

    [55] Righini M, Ghenuche P, Cherukulappurath S. Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas[J]. Nano Lett, 2009, 9(10): 3387-3391.

    [56] Zhang W, Huang L, Santschi C, et al. Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas[J]. Nano Lett, 2010, 10(3): 1006-1011.

    [57] Tang L, Kocabas S E, Latif S, et al. Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna[J]. Nat Photonics, 2008, 2: 226-229.

    [58] Kinkhabwala A, Yu Z F, Fan S H, et al. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nat Photonics, 2009, 3: 654-657.

    [59] Ac'imovic' S, Kreuzer M P, González M U, et al. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing[J]. ACS Nano, 2009, 3(5): 1231-1237.

    [60] Garcia-Parajo M F. Optical antennas focus in on biology[J]. Nat Photonics, 2008, 2: 201-203.

    [61] Kim S, Jin J, Kim Y J, et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 2008, 453(7196): 757-760.

    [62] Juan M L, Gordon R, Pang Y J, et al. Self-induced back-action optical trapping of dielectric nanoparticles[J]. Nat Phys, 2009, 5: 915-919.

    [63] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445: 39-46.

    [64] García-Vidal F J, Moreno E, Porto J A, et al. Transmission of light through a single rectangular hole[J]. Phys Rev Lett, 2005, 95(10): 103901.

    [65] García-Vidal F J, Martín-Moreno L, Moreno E, et al. Transmission of light through a single rectangular hole in real metal[J]. Phys Rev B, 2006, 74: 153411.

    [66] de García A F. Light transmission through a single cylindrical hole in a metallic film[J]. Opt Express, 2002, 10(25): 1475-1484.

    [67] Berthelot J, Ac'imovic' S S, Juan M L, et al. Three-dimensional manipulation with scanning near-field optical nanotweezers[J]. Nat Nanotechnol, 2014, 9(4): 295-299.

    [68] Pang Y, Gordon R. Optical trapping of a single protein[J]. Nano Lett, 2012, 12(1): 402-406.

    [69] Wei S, Lin J, Wang R, et al. Self-imaging generation of plasmonic void arrays[J]. Opt Lett, 2013, 38(15): 2783-2785.

    [70] Wang R, Du L P, Zhang C L, et al. A plasmonic petal-shaped beam for a microscopic phase sensitive SPR biosensor with ultrahigh sensitivity[J]. Opt Lett, 2013, 38: 4770-4773.

    [71] Zhang C L, Wang R, Min C J, et al. Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor[J]. Appl Phys Lett, 2013, 102: 011114.

    [72] Hansen P M, Bhatia V K, Harrit N, et al. Expanding the optical trapping range of gold nanoparticles[J]. Nano Lett, 2005, 5(10): 1937-1942.

    [73] Min C J, Shen Z, Shen J F, et al. Focused plasmonic trapping of metallic particles[J]. Nat Commun, 2013, 4: 2891.

    [74] Zhang Y Q, Wang J, Shen J F, et al. Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface[J]. Nano Lett, 2014, 14(11): 6430-6436.

    [75] Ciraci C, Hill R T, Mock J J, et al. Probing the ultimate limits of plasmonic enhancement[J]. Science, 2012, 337(6098): 1072-1074.

    [76] Du L P, Yuan L D, Yuan G H, et al. Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering[J]. Sci Rep, 2013, 3: 3064.

    [77] Maaroof A I, Nygaard J V, Sutherland D S. Plasmon hybridization in silver nanoislands as semishells arrays coupled to a thin metallic film[J]. Plasmonics, 2011, 6(2): 419-425.

    [78] Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces[J]. Nano Lett, 2004, 4(11): 2209-2213.

    [79] Aubry A, Lei D Y, Maier S A, et al. Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach[J]. ACS Nano, 2011, 5(4): 3293-3308.

    [80] Zhang L C, Dou X J, Min C J, et al. In-plane trapping and manipulation of ZnO nanowires by hybrid plasmonic field[J]. Nanoscale, 2016, 8: 9756-9763.

    [81] Piccione B, Cho C H, van Vugt L K, et al. All-optical active switching in individual semiconductor nanowires[J]. Nat Nanotechnol, 2012, 7(10): 640-645.

    [82] Kurt H, Giden I H, Citrin D S. Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network[J]. Opt Express, 2011, 19(27): 26827-26838.

    [83] Wei H, Wang Z X, Tian X R, et al. Cascaded logic gates in nanophotonic plasmon networks[J]. Nat Commun, 2011, 2: 387.

    [84] He H, Friese M E, Heckenberg N R, et al. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity[J]. Phys Rev Lett, 1995, 75(5): 826-829.

    [85] Simpson N B, Dholakia K, Allen L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Opt Lett, 1997, 22(1): 52-54.

    [86] Gahagan K T, Swartzlander G A. Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap[J]. Journal of the Optical Society of America B, 1999, 16(4): 533-537.

    [87] Curtis J E, Grier D G. Structure of optical vortices[J]. Phys Rev Lett, 2003, 90(13): 133901.

    [88] Jeffries G D M, Edgar J S, Zhao Y Q, et al. Using polarization-shaped optical vortex traps for single-cell nanosurgery[J]. Nano Lett, 2007, 7(2): 415-420.

    [89] Shvedov V G, Desyatnikov A S, Rode A V, et al. Optical vortex beams for trapping and transport of particles in air[J]. Appl Phys A, 2010, 100(2): 327-331.

    [90] Zhang Y Q, Shi W, Shen Z, et al. A plasmonic spanner for metal particle manipulation[J]. Sci Rep, 2015, 5: 15446.

    [91] Shoji T, Saitoh J, Kitamura N, et al. Permanent fixing or reversible trapping and release of DNA micropatterns on a gold nanostructure using continuous-wave or femtosecond-pulsed near-infrared laser light[J]. Journal of the American Chemical Society, 2013, 135(17): 6643-6648.

    [92] Shen J F, Wang J, Zhang C J, et al. Dynamic plasmonic tweezers enabled single-particle-film-system gap-mode surface-enhanced Raman scattering[J]. Appl Phys Lett, 2013, 103(19): 191119.

    [93] Yang A P. Measurement of multi-angle elastic back scattering spectra of microsphere based on off-axis parabolic mirror[D]. Tianjin: Nankai University, 2014.

    [94] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón A. Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator[J]. Opt Lett, 2013, 38(4): 534-536.

    [95] García-García J, Rickenstorff-Parrao C, Ramos-García R, et al. Simple technique for generating the perfect optical vortex[J]. Opt Lett, 2014, 39(18): 5305-5308.

    [96] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Opt Lett, 2015, 40(4): 597-600.

    [97] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chem Rev, 2004, 104(1): 293-346.

    [98] Thakor A S, Jokerst J, Zavaleta C, et al. Gold nanoparticles: a revival in precious metal administration to patients[J]. Nano Lett, 2011, 11(10): 4029-4036.

    [99] Svedberg F, Li Z P, Xu H X, et al. Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation[J]. Nano Lett, 2006, 6(12): 2639-2641.

    [100] Ndukaife J C, Mishra A, Guler U, et al. Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles[J]. ACS Nano, 2014, 8(9): 9035-9043.

    [101] Roxworthy B J, Ko K D, Kumar A, et al. Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting[J]. Nano Lett, 2012, 12(2): 796-801.

    CLP Journals

    [1] Wu Renglai, Quan Jun, Yang Xiyuan, Xiao Shifa, Xue Hongjie. Excitation and Modulation Properties of Dipole and Quadrupole Modes of Plasmon in One-Dimensional System[J]. Laser & Optoelectronics Progress, 2018, 55(7): 72501

    [2] Xinyang Cai, Xinwei Wang, Ruxue Li, Dengkui Wang, Xuan Fang, Dan Fang, Yuping Zhang, Xiuping Sun, Xiaohua Wang, Zhipeng Wei. Controllable Modulation of Surface Plasmon Resonance Wavelength of ITO Thin Films[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051602

    [3] Li Tao, Chen Ji, Zhu Shining. Manipulating Surface Plasmon Propagation: From Beam Modulation to Near-Field Holography[J]. Laser & Optoelectronics Progress, 2017, 54(5): 50002

    [4] Guanghui Ma, He Yu, Yuqian Liu, He Zhang, Liang Jin, Yingtian Xu. Resonance Radiation Enhancement of Metal Nanometer Surface Plasmons[J]. Laser & Optoelectronics Progress, 2018, 55(4): 042601

    [5] Jiaqi Chen, Guoqiu Yuan, Meng Wang, Min Cao. Advances in Directional Control of Surface Plasmon Amplification by Stimulated Emission of Radiation[J]. Laser & Optoelectronics Progress, 2018, 55(3): 030007

    Dou Xiujie, Min Changjun, Zhang Yuquan, Yuan Xiaocong. Surface Plasmon Polaritons Optical Tweezers Technology[J]. Acta Optica Sinica, 2016, 36(10): 1026004
    Download Citation