• Laser & Optoelectronics Progress
  • Vol. 54, Issue 9, 90001 (2017)
Yang Ping*, Wei Dan, Pang Kai, Wang Qiyan, Zhou Quanyu, and Wei Xunbin
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.090001 Cite this Article Set citation alerts
    Yang Ping, Wei Dan, Pang Kai, Wang Qiyan, Zhou Quanyu, Wei Xunbin. Progress in Detection of Circulating Tumor Cell by in vivo Photoacoustic Flow Cytometry[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90001 Copy Citation Text show less
    References

    [1] Siegel R L, Miller K D, Jemal A. Cancer statistics, 2016[J]. CA: A Cancer Journal for Clinicians, 2016, 66(1): 7-30.

    [2] National Bureau of Statistics of China. China statistical yearbook 2010[J]. Beijing: China Statics Press, 2010.

    [3] Chen W Q, Zheng R S, Baade P D, et al. Cancer statistics in China, 2015[J]. CA: A Cancer Journal for Clinicians, 2016, 66(2): 115-132.

    [4] Plaks V, Koopman C D, Werb Z. Circulating tumor cells[J]. Science, 2013, 341(6151): 1186-1188.

    [5] Chaffer C L, Weinberg R A. A perspective on cancer cell metastasis[J]. Science, 2011, 331(6024): 1559-1564.

    [6] Cristofanilli M, Budd G T, Ellis M J, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer[J]. New England Journal of Medicine, 2004, 351: 781-791.

    [7] Cohen S J, Punt C J, Iannotti N, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer[J]. Journal of Clinical Oncology, 2008, 26(19): 3213-3221.

    [8] de Bono J S, Scher H I, Montgomery R B, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer[J]. Clinical Cancer Research, 2008, 14(19): 6302-6309.

    [9] Alix-Panabières C, Pantel K. Circulating tumor cells: liquid biopsy of cancer[J]. Clinical Chemistry, 2013, 59(1): 110-118.

    [10] Galanzha E I, Zharov V P. Circulating tumor cell detection and capture by photoacoustic flow cytometry in vivo and ex vivo[J]. Cancers, 2013, 5(4): 1691-1738.

    [11] Alix-Panabières C, Pantel K. Challenges in circulating tumour cell research[J]. Nature Reviews Cancer, 2014, 14(9): 623-631.

    [12] Novak J, Georgakoudi I, Wei X, et al. In vivo flow cytometer for real-time detection and quantification of circulating cells[J]. Optics Letters, 2004, 29(1): 77-79.

    [13] Ding Y, Wang J, Fan Z, et al. Signal and depth enhancement for in vivo flow cytometer measurement of ear skin by optical clearing agents[J]. Biomedical Optics Express, 2013, 4(11): 2518-2526.

    [14] He W, Wang H, Hartmann L C, et al. In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry[J]. Proceedings of the National Academy of Sciences, 2007, 104(28): 11760-11765.

    [15] Sigrist M W. Laser generation of acoustic waves in liquids and gases[J]. Journal of Applied Physics, 1986, 60(7): R83-R122.

    [16] Viator J A, Goldschmidt B S, Bhattacharyya K, et al. Photoacoustic flow cytometry for detection and capture of circulating melanoma cells[M]//Circulating Tumor Cells: Isolation and Analysis. New Jersey: John Wiley & Sons, Incorporation, 2016: 249-266.

    [17] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 2017, 20: 305-324.

    [18] Zeng Guang, Shi Yan, Song Liang, et al. Novel illumination design of acoustic resolution photoacoustic microscopy system[J]. Chinese J Lasers, 2016, 43(2): 0204002.

    [19] Hill D W, Powell T. Non-dispersive infra-red gas analysis in science, medicine, and industry[M]. [S.l.]: Plenum Press, 1968.

    [20] Rosencwaig A. Photoacoustic spectroscopy of solids[J]. Optics Communications, 1973, 7(4): 305-308.

    [21] Mc Donald F A, Wetsel G C, Jr. Generalized theory of the photoacoustic effect[J]. Journal of Applied Physics, 1978, 49(4): 2313-2322.

    [22] Ode H. Photoacoustic microscope for detecting reflected detection light resulting from modulation by specimen: US9335253[P]. 2016-05-10.

    [23] Xu M, Wang L V. Photoacoustic imaging in biomedicine[J]. Review of Scientific Instruments, 2006, 77(4): 041101.

    [24] Xu Dong, Xiang Liangzhong, Ji Xuanrong. Photoacoustic imaging system based on multi-channel parallel acquisition[J]. Chinese J Lasers, 2011, 38(2): 0204002.

    [25] Yin Bangzheng, Xing Da, Wang Yi, et al. Fast photoacoustic tomography based on multivariate linear array detector[J]. Acta Optica Sinica, 2005, 25(3): 331-334.

    [26] He G, Xu D, Qin H, et al. In vivo cell characteristic extraction and identification by photoacoustic flow cytography[J]. Biomedical Optics Express, 2015, 6(10): 3748-3756.

    [27] Sarimollaoglu M, Nedosekin D A, Simanovsky Y, et al. In vivo photoacoustic time-of-flight velocity measurement of single cells and nanoparticles[J]. Optics Letters, 2011, 36(20): 4086-4088.

    [28] Cai C, Nedosekin D A, Menyaev Y A, et al. Photoacoustic flow cytometry for single sickle cell detection in vitro and in vivo[J]. Analytical Cellular Pathology, 2016, 2016: 2642361.

    [29] Menyaev Y A, Carey K A, Nedosekin D A, et al. Preclinical photoacoustic models: application for ultrasensitive single cell malaria diagnosis in large vein and artery[J]. Biomedical Optics Express, 2016, 7(9): 3643-3658.

    [30] Liu R, Wang C, Hu C, et al. In vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry[C]. SPIE, 2014: 89440Q.

    [31] Yang P, Liu R, Niu Z, et al. Noninvasive and label-free detection of circulating melanoma cells by in vivo photoacoustic flow cytometry[C]. SPIE, 2015: 93240G.

    [32] Zharov V P, Galanzha E I, Shashkov E V, et al. In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents[J]. Optics Letters, 2006, 31(24): 3623-3625.

    [33] Galanzha E I, Zharov V P. In vivo photoacoustic and photothermal cytometry for monitoring multiple blood rheology parameters[J]. Cytometry Part A, 2011, 79(10): 746-757.

    [34] Galanzha E I, Shashkov E V, Spring P M, et al. In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser[J]. Cancer Research, 2009, 69(20): 7926-7934.

    [35] He Y, Wang L, Shi J, et al. In vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells[J]. Scientific Reports, 2016, 6: 39616.

    [36] Oppenheim A V, Willsky A S, Nawab S H. Signals and systems[M]. New Jersey: Prentice-Hall Englewood Cliffs, 1983.

    [37] Strohm E M, Berndl E S, Kolios M C. Probing red blood cell morphology using high-frequency photoacoustics[J]. Biophysical Journal, 2013, 105(1): 59-67.

    [38] Strohm E M, Berndl E S, Kolios M C. High frequency label-free photoacoustic microscopy of single cells[J]. Photoacoustics, 2013, 1(3): 49-53.

    [39] Strohm E M, BerndL E S, Kolios M C. Circulating tumor cell detection using photoacoustic spectral methods[C]. SPIE, 2014: 89430D.

    [40] Niu Z, Yang P, Wei D, et al. Improving the signal analysis for in vivo photoacoustic flow cytometry[C]. SPIE, 2015: 932413.

    [42] Galanzha E I, Kim J W, Zharov V P. Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform for in-vivo detection and killing of circulating cancer stem cells[J]. Journal of Biophotonics, 2009, 2(12): 725-735.

    [43] Galanzha E I, Nedosekin D A, Sarimollaoglu M, et al. Photoacoustic and photothermal cytometry using photoswitchable proteins and nanoparticles with ultrasharp resonances[J]. Journal of Biophotonics, 2015, 8(1/2): 81-93.

    [44] Nedosekin D A, Juratli M A, Sarimollaoglu M, et al. Photoacoustic and photothermal detection of circulating tumor cells, bacteria and nanoparticles in cerebrospinal fluid in vivo and ex vivo[J]. Journal of Biophotonics, 2013, 6(6/7): 523-533.

    [45] Shashkov E V, Galanzha E I, Zharov V P. Photothermal and photoacoustic Raman cytometry in vitro and in vivo[J]. Optics Express, 2010, 18(7): 6929-6944.

    [46] Juratli M A, Sarimollaoglu M, Siegel E R, et al. Real-time monitoring of circulating tumor cell release during tumor manipulation using in vivo photoacoustic and fluorescent flow cytometry[J]. Head & Neck, 2014, 36(8): 1207-1215.

    [47] Galanzha E I, Shashkov E, Sarimollaoglu M, et al. In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles[J]. Plos One, 2012, 7(9): e45557.

    [48] Galanzha E I, Kokoska M S, Shashkov E V, et al. In vivo fiber-based multicolor photoacoustic detection and photothermal purging of metastasis in sentinel lymph nodes targeted by nanoparticles[J]. Journal of Biophotonics, 2009, 2(8/9): 528-539.

    [49] O′Brien C M, Rood K D, Bhattacharyya K, et al. Capture of circulating tumor cells using photoacoustic flowmetry and two phase flow[J]. Journal of Biomedical Optics, 2012, 17(6): 061221.

    [50] Nedosekin D A, Khodakovskaya M V, Biris A S, et al. In vivo plant flow cytometry: a first proof-of-concept[J]. Cytometry Part A, 2011, 79(10): 855-865.

    [51] Nolan J, Sarimollaoglu M, Nedosekin D A, et al. In vivo flow cytometry of circulating tumor-associated exosomes[J]. Analytical Cellular Pathology, 2016, 2016: 1628057.

    [52] Nedosekin D A, Sarimollaoglu M, Ye J H, et al. In vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers[J]. Cytometry Part A, 2011, 79(10): 825-833.

    [53] Juratli M A, Galanzha E I, Sarimollaoglu M, et al. In vivo detection of circulating tumor cells during tumor manipulation[C]. SPIE, 2013: 85652H.

    [54] Sarimollaoglu M, Nedosekin D A, Menyaev Y A, et al. Nonlinear photoacoustic signal amplification from single targets in absorption background[J]. Photoacoustics, 2014, 2(1): 1-11.

    [55] Kim J W, Galanzha E I, Shashkov E V, et al. Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents[J]. Nature Nanotechnology, 2009, 4(10): 688-694.

    [56] Zharov V P, Galanzha E I, Shashkov E V, et al. Photoacoustic flow cytometry: principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo[J]. Journal of Biomedical Optics, 2007, 12(5): 51503.

    [57] Nedosekin D A, Sarimollaoglu M, Shashkov E V, et al. Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser[J]. Optics Express, 2010, 18(8): 8605-8620.

    [58] Galanzha E I, Shashkov E V, Kelly T, et al. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells[J]. Nature Nanotechnology, 2009, 4(12): 855-860.

    Yang Ping, Wei Dan, Pang Kai, Wang Qiyan, Zhou Quanyu, Wei Xunbin. Progress in Detection of Circulating Tumor Cell by in vivo Photoacoustic Flow Cytometry[J]. Laser & Optoelectronics Progress, 2017, 54(9): 90001
    Download Citation