• Laser & Optoelectronics Progress
  • Vol. 60, Issue 7, 0706007 (2023)
Junhua Li1, Yan Dong1、2、*, Benzhen Lin1, and Yang Liu2
Author Affiliations
  • 1School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130012, Jilin, China
  • 2Fundamental Science on Space-Ground Laser Communication Technology Laboratory, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • show less
    DOI: 10.3788/LOP221964 Cite this Article Set citation alerts
    Junhua Li, Yan Dong, Benzhen Lin, Yang Liu. Improved Active Disturbance Rejection Control Algorithm Based on Fast Steering Mirror for Optical Communication[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0706007 Copy Citation Text show less
    References

    [1] Qi F. Development status and trend of airborne laser communication system[J]. Digital Communication World, 120(2018).

    [2] Yang S J, Ke X Z, Wu J L et al. Fast alignment of wireless optical communication using two-dimensional mirror[J]. Chinese Journal of Lasers, 49, 1106001(2022).

    [3] Qu Z, Chang S, Dong Y et al. Stability decision of airborne laser communication platform based on improved acceleration inertia feedback[J]. Acta Optica Sinica, 41, 2306007(2021).

    [4] Zhou C, Yu X N, Jiang H L et al. Atmospheric turbulence suppression methods for near the earth wireless laser communication channels based on avalanche photodiode adaptive gain control[J]. Chinese Journal of Lasers, 49, 0406002(2022).

    [5] Stanković M R, Manojlović S M, Simić S M et al. FPGA system-level based design of multi-axis ADRC controller[J]. Mechatronics, 40, 146-155(2016).

    [6] Ibraheem I K, Abdul-Adheem W R. On the improved nonlinear tracking differentiator based nonlinear PID controller design[J]. IJACSA, 7, 234-241(2016).

    [7] Wang C Y, Zhao S Q, Shi H W et al. Linear active disturbance rejection control of airborne photoelectric stabilized platform[J]. Infrared and Laser Engineering, 48, 1213002(2019).

    [8] Liu Z Q, Wang C Y. Cascade active disturbance rejection control algorithm for airborne photoelectric tracking and aiming pod[J]. Foreign Electronic Measurement Technology, 39, 53-57(2020).

    [9] Chen S Z, Liu M. Tracking control system design for airborne laser weapon based on active disturbance rejection control[J]. Electronics Optics&Control, 24, 85-89, 99(2017).

    [10] Chen S, Xue W C, Zhong S et al. On comparison of modified ADRCs for nonlinear uncertain systems with time delay[J]. Science China Information Sciences, 61, 70223(2018).

    [11] Han J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 56, 900-906(2009).

    [12] Ang K H, Chong G, Li Y. PID control system analysis, design, and technology[J]. IEEE Transactions on Control Systems Technology, 13, 559-576(2005).

    [13] Zhang J Q, Liu Y K, Gao S J et al. Control technology of ground-based laser communication servo turntable via a novel digital sliding mode controller[J]. Applied Sciences, 9, 4051(2019).

    [14] Gao Z Q. Active disturbance rejection control: a paradigm shift in feedback control system design[C], 2399-2405(2006).

    [15] Han J Q. Active disturbance rejection controller and its applications[J]. Control and Decision, 13, 19-23(1998).

    [16] Zhu B[M]. Introduction to active disturbance rejection control(2017).

    [17] Zhao L, Ji M, Zhao Z H et al. Primary-precise compounded control for stabilized platform in shipborne laser weapon[J]. Laser & Infrared, 49, 86-92(2019).

    Junhua Li, Yan Dong, Benzhen Lin, Yang Liu. Improved Active Disturbance Rejection Control Algorithm Based on Fast Steering Mirror for Optical Communication[J]. Laser & Optoelectronics Progress, 2023, 60(7): 0706007
    Download Citation