• Chinese Journal of Lasers
  • Vol. 50, Issue 9, 0907106 (2023)
Linjun Zhai1, Yuqing Fu2, and Yongzhao Du1、2、*
Author Affiliations
  • 1School of Biomedical Science, Huaqiao University, Quanzhou 362021, Fujian, China
  • 2College of Engineering, Huaqiao University, Quanzhou 362021, Fujian, China
  • show less
    DOI: 10.3788/CJL221200 Cite this Article Set citation alerts
    Linjun Zhai, Yuqing Fu, Yongzhao Du. Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications[J]. Chinese Journal of Lasers, 2023, 50(9): 0907106 Copy Citation Text show less
    References

    [1] Pijls N H J, de Vos A M J, Keulards D C J. Measurement of absolute coronary blood flow and microvascular resistance: a new window to coronary microcirculation[J]. Journal of the American College of Cardiology, 77, 742-744(2021).

    [2] Park J R, Lee B, Lee M J et al. Visualization of three-dimensional microcirculation of rodents’ retina and choroid for studies of critical illness using optical coherence tomography angiography[J]. Scientific Reports, 11, 14302(2021).

    [3] Awuah A, Moore J S, Nesbit M A et al. A novel algorithm for cardiovascular screening using conjunctival microcirculatory parameters and blood biomarkers[J]. Scientific Reports, 12, 6545(2022).

    [4] Liu C, Wang L D. Functional photoacoustic microscopy of hemodynamics: a review[J]. Biomedical Engineering Letters, 12, 97-124(2022).

    [5] Heeman W, Steenbergen W, van Dam G M et al. Clinical applications of laser speckle contrast imaging: a review[J]. Journal of Biomedical Optics, 24, 080901(2019).

    [6] Rabal H J, Roberto A, Braga H J J,[M]. Dynamic laser speckle and applications(2018).

    [7] Senarathna J, Yu H, Deng C et al. A miniature multi-contrast microscope for functional imaging in freely behaving animals[J]. Nature Communications, 10, 99(2019).

    [8] Srienc A I, Kurth-Nelson Z L, Newman E A. Imaging retinal blood flow with laser speckle flowmetry[J]. Frontiers in Neuroenergetics, 2, 128(2010).

    [9] Hirose S, Saito W, Yoshida K et al. Elevated choroidal blood flow velocity during systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease[J]. Acta Ophthalmologica, 86, 902-907(2008).

    [10] Qureshi M M, Liu Y, Mac K D et al. Quantitative blood flow estimation in vivo by optical speckle image velocimetry[J]. Optica, 8, 1092-1101(2021).

    [11] Wang M Y, Mao W J, Guan C Z et al. Full-field functional optical angiography[J]. Optics Letters, 42, 635-638(2017).

    [12] Hashimoto K, Kunikata H, Yasuda M et al. The relationship between advanced glycation end products and ocular circulation in type 2 diabetes[J]. Journal of Diabetes and Its Complications, 30, 1371-1377(2016).

    [13] Heeman W, Maassen H, Calon J et al. Real-time visualization of renal microperfusion using laser speckle contrast imaging[J]. Journal of Biomedical Optics, 26, 056004(2021).

    [14] Zheng C, Lau L W, Cha J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance[J]. Biomedical Optics Express, 9, 5962-5981(2018).

    [15] Dhanesha N, Patel R B, Doddapattar P et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke[J]. Blood, 139, 1234-1245(2022).

    [16] Boas D A, Dunn A K. Laser speckle contrast imaging in biomedical optics[J]. Journal of Biomedical Optics, 15, 011109(2010).

    [17] Feng X M, Yu Y, Zou D et al. Functional imaging of human retina using integrated multispectral and laser speckle contrast imaging[J]. Journal of Biophotonics, 15, e202100285(2022).

    [18] Zhang J Y, Xie Z N, Kong P et al. Application of speckle perfusion imaging in medicine[J]. Laser & Optoelectronics Progress, 59, 2200003(2022).

    [19] Brinca A, Pinho A, Vieira R. Laser speckle contrast imaging for assessment of human skin graft microcirculation[J]. Journal of the European Academy of Dermatology and Venereology: JEADV, 34, e491-e493(2020).

    [20] Draijer M, Hondebrink E, van Leeuwen T et al. Review of laser speckle contrast techniques for visualizing tissue perfusion[J]. Lasers in Medical Science, 24, 639-651(2009).

    [21] Luo Q M, Jiang C, Li P C et al. Laser speckle imaging of cerebral blood flow[M]. Tuchin V V. Handbook of coherent-domain optical methods, 167-211(2012).

    [22] Kisler K, Nelson A R, Montagne A et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nature Reviews Neuroscience, 18, 419-434(2017).

    [23] Pan H C, Liao L D, Lo Y C et al. Neurovascular function recovery after focal ischemic stroke by enhancing cerebral collateral circulation via peripheral stimulation-mediated interarterial anastomosis[J]. Neurophotonics, 4, 035003(2017).

    [24] Basak K, Manjunatha M, Dutta P K. Review of laser speckle-based analysis in medical imaging[J]. Medical & Biological Engineering & Computing, 50, 547-558(2012).

    [25] Kong P, Yang H, Zheng G et al. Advances in laser speckle flowgraphy technique[J]. Optical Technique, 40, 21-26(2014).

    [26] Zhang J D, Tan Z, Lin L S et al. Recent advances in monitoring blood flow with laser speckle imaging[J]. Chinese Journal of Laser Medicine&Surgery, 25, 233-241, 244(2016).

    [27] Li C X, Chen W L, Jiang J Y et al. Laser speckle contrast imaging on in vivo blood flow: a review[J]. Chinese Journal of Lasers, 45, 0207006(2018).

    [28] Wang M, Hong J C, Zhou F F et al. Application of laser speckle contrast imaging in the research on brain science[J]. Progress in Biochemistry and Biophysics, 48, 922-937(2021).

    [29] Wu D D, Yao K, Guan K J et al. Cerebral blood flow analysis based on laser speckle contrast imaging technology[J]. Optics and Precision Engineering, 28, 2411-2420(2020).

    [30] Qiu J J, Li P C, Luo W H et al. Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast[J]. Journal of Biomedical Optics, 15, 016003(2010).

    [31] Goodman J W[M]. Speckle phenomena in optics: theory and applications(2007).

    [32] Briers J D, Webster S. Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow[J]. Journal of Biomedical Optics, 1, 174-179(1996).

    [33] Richards G J, Briers J D. Capillary-blood-flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range[J]. Proceedings of SPIE, 2981, 160-171(1997).

    [34] Briers J D, Richards G, He X W. Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)[J]. Journal of Biomedical Optics, 4, 164-175(1999).

    [35] Briers J D, Richards G J. Laser speckle contrast analysis (LASCA) for flow measurement[J]. Proceedings of SPIE, 3098, 211-221(1997).

    [36] Yoshimura T. Statistical properties of dynamic speckles[J]. Journal of the Optical Society of America A, 3, 1032-1054(1986).

    [37] Thompson O, Andrews M, Hirst E. Correction for spatial averaging in laser speckle contrast analysis[J]. Biomedical Optics Express, 2, 1021-1029(2011).

    [38] Briers J D. Laser speckle contrast imaging for measuring blood flow[J]. Optica Applicata, 37, 139-152(2007).

    [39] Fercher A F, Briers J D. Flow visualization by means of single-exposure speckle photography[J]. Optics Communications, 37, 326-330(1981).

    [40] Leahy M J, Enfield J G, Clancy N T et al. Biophotonic methods in microcirculation imaging[J]. Medical Laser Application, 22, 105-126(2007).

    [41] Dunn A K, Bolay H, Moskowitz M A et al. Dynamic imaging of cerebral blood flow using laser speckle[J]. Journal of Cerebral Blood Flow & Metabolism, 21, 195-201(2001).

    [42] Cheng H Y, Luo Q M, Zeng S Q et al. Modified laser speckle imaging method with improved spatial resolution[J]. Journal of Biomedical Optics, 8, 559-564(2003).

    [43] Le T M, Paul J S, Al-Nashash H et al. New insights into image processing of cortical blood flow monitors using laser speckle imaging[J]. IEEE Transactions on Medical Imaging, 26, 833-842(2007).

    [44] Duncan D D, Kirkpatrick S J. Spatio-temporal algorithms for processing laser speckle imaging data[J]. Proceedings of SPIE, 6858, 685802(2008).

    [45] Liu X H, Wei J, Meng L et al. Motion correction of laser speckle imaging of blood flow by simultaneous imaging of tissue structure and non-rigid registration[J]. Optics and Lasers in Engineering, 140, 106526(2021).

    [46] Lü W Z, Wang Y, Chen X et al. Enhancing vascular visualization in laser speckle contrast imaging of blood flow using multi-focus image fusion[J]. Journal of Biophotonics, 12, e201800100(2019).

    [47] Cheng W M, Zhu X, Chen X et al. Manhattan distance-based adaptive 3D transform-domain collaborative filtering for laser speckle imaging of blood flow[J]. IEEE Transactions on Medical Imaging, 38, 1726-1735(2019).

    [48] Zhang C, Feng W, Zhao Y J et al. A large, switchable optical clearing skull window for cerebrovascular imaging[J]. Theranostics, 8, 2696-2708(2018).

    [49] Hong J C, Wang Y, Chen X et al. Fluctuations of temporal contrast in laser speckle imaging of blood flow[J]. Optics Letters, 43, 5214-5217(2018).

    [50] Chen M, Wen D, Huang S L et al. Laser speckle contrast imaging of blood flow in the deep brain using microendoscopy[J]. Optics Letters, 43, 5627-5630(2018).

    [51] Wang Y, Wen D, Chen X et al. Improving the estimation of flow speed for laser speckle imaging with single exposure time[J]. Optics Letters, 42, 57-60(2017).

    [52] Liu S S, Li P C, Luo Q M. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit[J]. Optics Express, 16, 14321-14329(2008).

    [53] Zhang Y F, Wang C, Tong S B et al. Separating single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow[J]. Biomedical Optics Express, 13, 2881-2895(2022).

    [54] Miao P, Zhang Y F, Wang C et al. Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium[J]. Applied Physics Letters, 120, 043701(2022).

    [55] Zhang Y F, Wang C, Tong S B et al. Extracting single- and multiple-scattering components in laser speckle contrast imaging of tissue blood flow[EB/OL]. https://arxiv.org/abs/2112.00537

    [56] Chen H P, Shi Y, Bo B et al. Real-time cerebral vessel segmentation in laser speckle contrast image based on unsupervised domain adaptation[J]. Frontiers in Neuroscience, 15, 755198(2021).

    [57] Chen H P, Miao P, Bo B et al. A prototype system of portable laser speckle imager based on embedded graphics processing unit platform[C], 3919-3922(2019).

    [58] Miao P, Chao Z, Feng S H et al. Local scattering property scales flow speed estimation in laser speckle contrast imaging[J]. Laser Physics Letters, 12, 075601(2015).

    [59] Miao P, Chao Z, Zhang Y G et al. Entropy analysis reveals a simple linear relation between laser speckle and blood flow[J]. Optics Letters, 39, 3907-3910(2014).

    [60] Miao P, Tong S B, Lu H Y et al. Laser speckle contrast imaging of cerebral blood flow in freely moving animals[J]. Journal of Biomedical Optics, 16, 090502(2011).

    [61] Miao P, Rege A, Li N et al. High resolution cerebral blood flow imaging by registered laser speckle contrast analysis[J]. IEEE Transactions on Biomedical Engineering, 57, 1152-1157(2010).

    [62] Miao P, Li M H, Fontenelle H et al. Imaging the cerebral blood flow with enhanced laser speckle contrast analysis (eLASCA) by monotonic point transformation[J]. IEEE Transactions on Biomedical Engineering, 56, 1127-1133(2009).

    [63] Li H, Liu Q, Lu H Y et al. Directly measuring absolute flow speed by frequency-domain laser speckle imaging[J]. Optics Express, 22, 21079-21087(2014).

    [64] Li C X, Wang R K. Dynamic laser speckle angiography achieved by eigen-decomposition filtering[J]. Journal of Biophotonics, 10, 805-810(2017).

    [65] Wu Q. Study on the method of laparoscopic laser speckle blood flow imaging[D](2021).

    [66] Wu Q, Zhou W, Xu B T et al. Laparoscopic laser speckle blood flow imaging technology[J]. Acta Optica Sinica, 42, 0717001(2022).

    [67] Li Y Z, Yang H, Li R et al. Source coherence in laser speckle blood imaging system[J]. Optics and Precision Engineering, 27, 2127-2135(2019).

    [68] Jia Y W, Yang H, Li R et al. Measurement of physical therapy efficiency of traditional Chinese medicine by laser speckle blood flow imaging[J]. Optics and Precision Engineering, 25, 1410-1417(2017).

    [69] Zeng Y G, Wang M Y, Feng G P et al. Laser speckle imaging based on intensity fluctuation modulation[J]. Optics Letters, 38, 1313-1315(2013).

    [70] Wang M Y, Zeng Y G, Liang X J et al. Full-field optical micro-angiography[J]. Applied Physics Letters, 104, 053704(2014).

    [71] Wu N S. The study on full-field optical angiography functional imaging technique[D](2019).

    [72] Wang M Y, Guan C Z, Mao W J et al. Real-time full-field optical angiography utilizing principal component analysis[J]. Optics Letters, 43, 2559-2562(2018).

    [73] Liu C, Kılıç K, Erdener S E et al. Choosing a model for laser speckle contrast imaging[J]. Biomedical Optics Express, 12, 3571-3583(2021).

    [74] Postnov D D, Tang J B, Erdener S E et al. Dynamic light scattering imaging[J]. Science Advances, 6, eabc4628(2020).

    [75] Postnov D D, Cheng X J, Erdener S E et al. Choosing a laser for laser speckle contrast imaging[J]. Scientific Reports, 9, 2542(2019).

    [76] Yuan S, Devor A, Boas D A et al. Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging[J]. Applied Optics, 44, 1823-1830(2005).

    [77] Ayata C, Dunn A K, Gursoy-Ozdemir Y et al. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex[J]. Journal of Cerebral Blood Flow and Metabolism, 24, 744-755(2004).

    [78] Boas D A, Yodh A G. Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation[J]. Journal of the Optical Society of America A, 14, 192-215(1997).

    [79] Kazmi S M S, Balial S, Dunn A K. Optimization of camera exposure durations for multi-exposure speckle imaging of the microcirculation[J]. Biomedical Optics Express, 5, 2157-2171(2014).

    [80] Davis M A, Kazmi S M S, Dunn A K. Imaging depth and multiple scattering in laser speckle contrast imaging[J]. Journal of Biomedical Optics, 19, 086001(2014).

    [81] Richards L M, Kazmi S M S, Davis J L et al. Low-cost laser speckle contrast imaging of blood flow using a webcam[J]. Biomedical Optics Express, 4, 2269-2283(2013).

    [82] Tom W J, Ponticorvo A, Dunn A K. Efficient processing of laser speckle contrast images[J]. IEEE Transactions on Medical Imaging, 27, 1728-1738(2008).

    [83] Parthasarathy A B, Tom W J, Gopal A et al. Robust flow measurement with multi-exposure speckle imaging[J]. Optics Express, 16, 1975-1989(2008).

    [84] Zakharov P, Völker A C, Wyss M T et al. Dynamic laser speckle imaging of cerebral blood flow[J]. Optics Express, 17, 13904-13917(2009).

    [85] Völker A C, Zakharov P, Weber B et al. Laser speckle imaging with an active noise reduction scheme[J]. Optics Express, 13, 9782-9787(2005).

    [86] Lertsakdadet B, Dunn C, Bahani A et al. Handheld motion stabilized laser speckle imaging[J]. Biomedical Optics Express, 10, 5149-5158(2019).

    [87] Farraro R, Fathi O, Handheld Choi B.. point-of-care laser speckle imaging[J]. Journal of Biomedical Optics, 21, 094001(2016).

    [88] Regan C, Yang B Y, Mayzel K C et al. Fiber-based laser speckle imaging for the detection of pulsatile flow[J]. Lasers in Surgery and Medicine, 47, 520-525(2015).

    [89] Crouzet C, Nguyen J Q, Ponticorvo A et al. Acute discrimination between superficial-partial and deep-partial thickness burns in a preclinical model with laser speckle imaging[J]. Burns, 41, 1058-1063(2015).

    [90] Rice T B, Kwan E, Hayakawa C K et al. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging[J]. Biomedical Optics Express, 4, 2880-2892(2013).

    [91] Ramirez-San-Juan J C, Mendez-Aguilar E, Salazar-Hermenegildo N et al. Effects of speckle/pixel size ratio on temporal and spatial speckle-contrast analysis of dynamic scattering systems: implications for measurements of blood-flow dynamics[J]. Biomedical Optics Express, 4, 1883-1889(2013).

    [92] Yang O, Cuccia D J, Choi B. Real-time blood flow visualization using the graphics processing unit[J]. Journal of Biomedical Optics, 16, 016009(2011).

    [93] Huang Y C, Ringold T L, Nelson J S et al. Noninvasive blood flow imaging for real-time feedback during laser therapy of port wine stain birthmarks[J]. Lasers in Surgery and Medicine, 40, 167-173(2008).

    [94] Ramirez-San-Juan J C, Nelson J S, Choi B. Comparison of Lorentzian- and Gaussian-based approaches for laser speckle imaging of blood flow dynamics[J]. Proceedings of SPIE, 6079, 607924(2006).

    [95] Choi B, Ramirez-San-Juan J C, Lotfi J et al. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics[J]. Journal of Biomedical Optics, 11, 041129(2006).

    [96] Briers D, Duncan D D, Hirst E R et al. Laser speckle contrast imaging: theoretical and practical limitations[J]. Journal of Biomedical Optics, 18, 066018(2013).

    [97] Yuan S. Sensitivity, noise and quantitative model of laser speckle contrast imaging[D](2008).

    [98] Rege A, Senarathna J, Li N et al. Anisotropic processing of laser speckle images improves spatiotemporal resolution[J]. IEEE Transactions on Biomedical Engineering, 59, 1272-1280(2012).

    [99] Kulkarni R, Banoth E, Pal P. Dynamic laser speckle contrast imaging using singular value decomposition[C], JW2A.44(2020).

    [100] Lu Y M, Wang R K. Removing dynamic distortions from laser speckle flowgraphy using eigen-decomposition and spatial filtering[J]. Journal of Biophotonics, 15, e202100294(2022).

    [101] Song L P, Wang X Y, Zhang R et al. Improving temporal resolution and speed sensitivity of laser speckle contrast analysis imaging based on noise reduction with an anisotropic diffusion filter[J]. Journal of Optics, 20, 075301(2018).

    [102] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007).

    [103] Miao P. High resolution laser speckle imaging of blood flow: methods and applications[D](2011).

    [104] Su C Z, Chen D, Cao G H et al. Reducing the influence of non-uniformity of luminous intensity on the inhomogeneity correction for CCD[J]. Infrared and Laser Engineering, 40, 680-684(2011).

    [105] Brown L G. A survey of image registration techniques[J]. ACM Computing Surveys, 24, 325-376(1992).

    [106] Guilbert J, Desjardins M. Movement correction method for laser speckle contrast imaging of cerebral blood flow in cranial windows in rodents[J]. Journal of Biophotonics, 15, e202100218(2022).

    [107] Li Y Y, Liu R, Wang Y et al. Detecting relative speed changes of moving objects through scattering medium by using wavefront shaping and laser speckle contrast analysis[J]. Optics Express, 24, 8382-8390(2016).

    [108] Sigal I, Gad R, Caravaca-Aguirre A M et al. Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging[J]. Biomedical Optics Express, 5, 123-135(2013).

    [109] Ringuette D, Sigal I, Gad R et al. Reducing misfocus-related motion artefacts in laser speckle contrast imaging[J]. Biomedical Optics Express, 6, 266-276(2015).

    [110] Song L P, Elson D S. Effect of signal intensity and camera quantization on laser speckle contrast analysis[J]. Biomedical Optics Express, 4, 89-104(2013).

    [111] Kim S, Kim E, Anguluan E et al. Sample entropy analysis of laser speckle fluctuations to suppress motion artifact on blood flow monitoring[J]. Chinese Optics Letters, 20, 011702(2022).

    [112] Tian B X, Han J, Liu B C. Research on non-invasive deep focusing in random scattering medium[J]. Laser & Optoelectronics Progress, 59, 1029001(2022).

    [113] Li Y Y. Research on laser speckle contrast imaging technology through scattering media based on wavefront modulation technology[D](2018).

    [114] Fredriksson I, Larsson M. On the equivalence and differences between laser Doppler flowmetry and laser speckle contrast analysis[J]. Journal of Biomedical Optics, 21, 126018(2016).

    [115] Kazmi S M S, Faraji E, Davis M A et al. Flux or speed? Examining speckle contrast imaging of vascular flows[J]. Biomedical Optics Express, 6, 2588-2608(2015).

    [116] Lee B, Sosnovtseva O, Sørensen C M et al. Multi-scale laser speckle contrast imaging of microcirculatory vasoreactivity[J]. Biomedical Optics Express, 13, 2312-2322(2022).

    [117] Gao J J, Liu H L, Wang X et al. Comparison of scattering equivalence between ground glass and volume scattering media[J]. Acta Optica Sinica, 41, 1729002(2021).

    [118] Zheng S Q, Xiao S, Kretsge L et al. Depth resolution in multifocus laser speckle contrast imaging[J]. Optics Letters, 46, 5059-5062(2021).

    [119] Xiao S, Gritton H, Tseng H A et al. High-contrast multifocus microscopy with a single camera and z-splitter prism[J]. Optica, 7, 1477-1486(2020).

    [120] Buijs J, Gucht J V D, Sprakel J. Fourier transforms for fast and quantitative laser speckle imaging[J]. Scientific Reports, 9, 13279(2019).

    [121] Chen M T, Papadakis M, Durr N J. Speckle illumination SFDI for projector-free optical property mapping[J]. Optics Letters, 46, 673-676(2021).

    [122] Mizeva I, Dremin V, Potapova E et al. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin[J]. IEEE Transactions on Bio-Medical Engineering, 67, 1882-1889(2020).

    [123] Adrian R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 23, 261-304(1991).

    [124] Keane R D, Adrian R J. Theory of cross-correlation analysis of PIV images[J]. Applied Scientific Research, 49, 191-215(1992).

    [125] Liu X L, Yang H, Li R. Improving contrast accuracy and resolution of laser speckle contrast imaging using two-dimensional entropy algorithm[J]. IEEE Access, 9, 148925-148932(2021).

    [126] Hultman M, Fredriksson I, Larsson M et al. A 15.6 frames per second 1-megapixel multiple exposure laser speckle contrast imaging setup[J]. Journal of Biophotonics, 11, e201700069(2018).

    [127] He H, Tang Y, Zhou F Y et al. Lateral laser speckle contrast analysis combined with line beam scanning illumination to improve the sampling depth of blood flow imaging[J]. Optics Letters, 37, 3774-3776(2012).

    [128] Varma H M, Valdes C P, Kristoffersen A K et al. Speckle contrast optical tomography (SCOT): reconstructing the three dimensional distribution of blood flow in deep tissues[C], BW3B.2(2014).

    [129] Varma H M, Valdes C P, Kristoffersen A K et al. Speckle contrast optical tomography: a new method for deep tissue three-dimensional tomography of blood flow[J]. Biomedical Optics Express, 5, 1275-1289(2014).

    [130] Li D Y, Xia Q, Yu T T et al. Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from Monte Carlo simulation to experimental demonstration[J]. Light: Science & Applications, 10, 241(2021).

    [131] Dunn J F, Forrester K R, Martin L et al. A transmissive laser speckle imaging technique for measuring deep tissue blood flow: an example application in finger joints[J]. Lasers in Surgery and Medicine, 43, 21-28(2011).

    [132] Bi R Z, Dong J, Lee K. Deep tissue flowmetry based on diffuse speckle contrast analysis[J]. Optics Letters, 38, 1401-1403(2013).

    [133] Siket M, Jánoki I, Demeter K et al. Time varied illumination laser speckle contrast imaging[J]. Optics Letters, 46, 713-716(2021).

    [134] Tang X J, He H, Jiang C et al. The multiple parameter hemodynamic imaging system based on ARM[J]. Proceedings of SPIE, 7280, 72800Y(2009).

    [135] Tang X J, Feng N Y, Sun X L et al. Portable laser speckle perfusion imaging system based on digital signal processor[J]. Review of Scientific Instruments, 81, 125110(2010).

    [136] Jiang C, Zhang H Y, Wang J et al. Dedicated hardware processor and corresponding system-on-chip design for real-time laser speckle imaging[J]. Journal of Biomedical Optics, 16, 116008(2011).

    [137] Tang X J. Research on portable laser speckle contrast imaging system and its applications[D](2011).

    [138] O'Doherty J, McNamara P, Clancy N T et al. Comparison of instruments for investigation of microcirculatory blood flow and red blood cell concentration[J]. Journal of Biomedical Optics, 14, 034025(2009).

    [139] Qin J, Reif R, Zhi Z W et al. Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system[J]. Biomedical Optics Express, 3, 455-466(2012).

    [140] Liu Q, Chen S Y, Soetikno B et al. Monitoring acute stroke in mouse model using laser speckle imaging-guided visible-light optical coherence tomography[J]. IEEE Transactions on Biomedical Engineering, 65, 2136-2142(2018).

    [141] Lee S, Namgoong J M, Kim Y et al. Multimodal imaging of laser speckle contrast imaging combined with mosaic filter-based hyperspectral imaging for precise surgical guidance[J]. IEEE Transactions on Biomedical Engineering, 69, 443-452(2022).

    [142] Liang W X, Hall G, Messerschmidt B et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo[J]. Light: Science & Applications, 6, e17082(2017).

    [143] Gao W, Ota H, Kiriya D et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 52, 523-533(2019).

    [144] Chen Y H, Rommelfanger N J, Mahdi A I et al. How is flexible electronics advancing neuroscience research?[J]. Biomaterials, 268, 120559(2021).

    [145] Wang D P, Xia J. Optics based biomedical imaging: principles and applications[J]. Journal of Applied Physics, 125, 191101(2019).

    [146] Tuchin V V[M]. Handbook of coherent-domain optical methods: biomedical diagnosis, environmental monitoring, and materials science(2013).

    [147] McDonald D M, Choyke P L. Imaging of angiogenesis: from microscope to clinic[J]. Nature Medicine, 9, 713-725(2003).

    [148] AlJaroudi W A, Hage F G. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2020: positron emission tomography, computed tomography, and magnetic resonance[J]. Journal of Nuclear Cardiology, 28, 2100-2111(2021).

    [149] Driessen R S, Danad I, Stuijfzand W J et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis[J]. Journal of the American College of Cardiology, 73, 161-173(2019).

    [150] Hajhosseiny R, Bustin A, Munoz C et al. Coronary magnetic resonance angiography: technical innovations leading us to the promised land?[J]. JACC: Cardiovascular Imaging, 13, 2653-2672(2020).

    Linjun Zhai, Yuqing Fu, Yongzhao Du. Advances in Laser Speckle Contrast Imaging: Key Techniques and Applications[J]. Chinese Journal of Lasers, 2023, 50(9): 0907106
    Download Citation