• Opto-Electronic Engineering
  • Vol. 47, Issue 6, 200093 (2020)
Nie Fangsong*, Jiang Meiling, Zhang Mingsi, Cao Yaoyu, and Li Xiangping
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.12086/oee.2020.200093 Cite this Article
    Nie Fangsong, Jiang Meiling, Zhang Mingsi, Cao Yaoyu, Li Xiangping. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electronic Engineering, 2020, 47(6): 200093 Copy Citation Text show less
    References

    [1] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angu-lar momentum of light and the transformation of La-guerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189.

         Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angu-lar momentum of light and the transformation of La-guerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189.

    [2] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplex-ing[J]. Nature Photonics, 2012, 6(7): 488–496.

         Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplex-ing[J]. Nature Photonics, 2012, 6(7): 488–496.

    [3] Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545–1548.

         Bozinovic N, Yue Y, Ren Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545–1548.

    [4] Vallone G, D’Ambrosio V, Sponselli A, et al. Free-space quantum key distribution by rotation-invariant twisted photons[J]. Physical Review Letters, 2014, 113(6): 060503.

         Vallone G, D’Ambrosio V, Sponselli A, et al. Free-space quantum key distribution by rotation-invariant twisted photons[J]. Physical Review Letters, 2014, 113(6): 060503.

    [5] Gan Z S, Cao YY, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

         Gan Z S, Cao YY, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061.

    [6] Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Op-to-Electronic Engineering, 2017, 44(12): 1133–1145.

         Cao Y Y, Xie F, Zhang P D, et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Op-to-Electronic Engineering, 2017, 44(12): 1133–1145.

    [7] Lehmuskero A, Li Y M, Johansson P, et al. Plasmonic particles set into fast orbital motion by an optical vortex beam[J]. Optics Express, 2014, 22(4): 4349–4356.

         Lehmuskero A, Li Y M, Johansson P, et al. Plasmonic particles set into fast orbital motion by an optical vortex beam[J]. Optics Express, 2014, 22(4): 4349–4356.

    [8] Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810–816.

         Grier D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810–816.

    [9] Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731.

         Tao S H, Yuan X C, Lin J, et al. Fractional optical vortex beam induced rotation of particles[J]. Optics Express, 2005, 13(20): 7726–7731.

    [10] Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Ex-press, 2004, 12(6): 1144–1149.

         Ladavac K, Grier D G. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays[J]. Optics Ex-press, 2004, 12(6): 1144–1149.

    [11] Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in iso-tropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

         Ni J C, Wang C W, Zhang C C, et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in iso-tropic material[J]. Light: Science & Applications, 2017, 6(7): e17011.

    [12] Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447–2452.

         Ouyang X, Xu Y, Feng Z W, et al. Polychromatic and polarized multilevel optical data storage[J]. Nanoscale, 2019, 11(5): 2447–2452.

    [13] Li X P, Cao YY,Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

         Li X P, Cao YY,Tian N, et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2015, 2(6): 567–570.

    [14] Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nano-rods for multi-dimensional optical data storage[J]. Op-to-Electronic Engineering, 2019, 46(3): 180584

         Ouyang X, Xu Y, Xian M C, et al. Encoding disorder gold nano-rods for multi-dimensional optical data storage[J]. Op-to-Electronic Engineering, 2019, 46(3): 180584

    [15] Jiang M L, Zhang M S, Li X P, et al. Research progress of su-per-resolution optical data storage[J]. Opto-Electronic Engi-neering, 2019, 46(3): 180649.

         Jiang M L, Zhang M S, Li X P, et al. Research progress of su-per-resolution optical data storage[J]. Opto-Electronic Engi-neering, 2019, 46(3): 180649.

    [16] Campbell G, Hage B, Buchler B, et al. Generation of high-order optical vortices using directly machined spiral phase mirrors[J]. Applied Optics, 2012, 51(7): 873–876.

         Campbell G, Hage B, Buchler B, et al. Generation of high-order optical vortices using directly machined spiral phase mirrors[J]. Applied Optics, 2012, 51(7): 873–876.

    [17] Wei D Z,Wu Y, Wang Y M, et al. Survival of the orbital angular momentum of light through an extraordinary optical transmission process in the paraxial approximation[J]. Optics Express, 2016, 24(11): 12007–12012.

         Wei D Z,Wu Y, Wang Y M, et al. Survival of the orbital angular momentum of light through an extraordinary optical transmission process in the paraxial approximation[J]. Optics Express, 2016, 24(11): 12007–12012.

    [18] Beresna M, Gecevi.ius M, Kazansky P G, et al. Radially pola-rized optical vortex converter created by femtosecond laser na-nostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

         Beresna M, Gecevi.ius M, Kazansky P G, et al. Radially pola-rized optical vortex converter created by femtosecond laser na-nostructuring of glass[J]. Applied Physics Letters, 2011, 98(20): 201101.

    [19] Nersisyan S R, Tabiryan N V, Mawet D, et al. Improving vector vortex waveplates for high-contrast coronagraphy[J]. Optics Ex-press, 2013, 21(7): 8205–8213.

         Nersisyan S R, Tabiryan N V, Mawet D, et al. Improving vector vortex waveplates for high-contrast coronagraphy[J]. Optics Ex-press, 2013, 21(7): 8205–8213.

    [20] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

         Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905.

    [21] Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316.

         Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313–316.

    [22] Wei B Y, Hu W, Ming Y, et al. Generating switchable and recon-figurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590–1595.

         Wei B Y, Hu W, Ming Y, et al. Generating switchable and recon-figurable optical vortices via photopatterning of liquid crystals[J]. Advanced Materials, 2014, 26(10): 1590–1595.

    [23] Wang X L, Lou K, Chen J, et al. Unveiling locally linearly pola-rized vector fields with broken axial symmetry[J]. Physical Re-view A, 2011, 83(6): 063813.

         Wang X L, Lou K, Chen J, et al. Unveiling locally linearly pola-rized vector fields with broken axial symmetry[J]. Physical Re-view A, 2011, 83(6): 063813.

    [24] Wang X L, Chen J, Li Y N, et al. Optical orbital angular momen-tum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

         Wang X L, Chen J, Li Y N, et al. Optical orbital angular momen-tum from the curl of polarization[J]. Physical Review Letters, 2010, 105(25): 253602.

    [25] Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786–10795.

         Wang X L, Li Y N, Chen J, et al. A new type of vector fields with hybrid states of polarization[J]. Optics Express, 2010, 18(10): 10786–10795.

    [26] Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363–366.

         Cai X L, Wang J W, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363–366.

    [27] Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.

         Yu N F, Capasso F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139–150.

    [28] Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

         Karimi E, Schulz S A, de Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167.

    [29] Talbot H F. LXXVI. Facts relating to optical science. No. Ⅳ[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1836, 9(56): 401–407.

         Talbot H F. LXXVI. Facts relating to optical science. No. Ⅳ[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1836, 9(56): 401–407.

    [30] Rayleigh L. XXV. On copying diffraction-gratings, and on some phenomena connected therewith[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 11(67): 196–205.

         Rayleigh L. XXV. On copying diffraction-gratings, and on some phenomena connected therewith[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1881, 11(67): 196–205.

    [31] Zhu L W, Yin X, Hong Z P, et al. Reciprocal vector theory for diffractive self-imaging[J]. Journal of the Optical Society of America A, 2008, 25(1): 203–210.

         Zhu L W, Yin X, Hong Z P, et al. Reciprocal vector theory for diffractive self-imaging[J]. Journal of the Optical Society of America A, 2008, 25(1): 203–210.

    [32] Li Z G, Yang R, Sun M Y, et al. Detour phase Talbot array illu-minator[J]. Chinese Optics Letters, 2019, 17(7): 070501.

         Li Z G, Yang R, Sun M Y, et al. Detour phase Talbot array illu-minator[J]. Chinese Optics Letters, 2019, 17(7): 070501.

    [33] Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967–969.

         Brown B R, Lohmann A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967–969.

    [34] Lohmann A W, Paris D P. Binary fraunhofer holograms, gener-ated by computer[J]. Applied Optics, 1967, 6(10): 1739–1748.

         Lohmann A W, Paris D P. Binary fraunhofer holograms, gener-ated by computer[J]. Applied Optics, 1967, 6(10): 1739–1748.

    Nie Fangsong, Jiang Meiling, Zhang Mingsi, Cao Yaoyu, Li Xiangping. Orbital angular momentum Talbot array illuminator based on detour phase encoding[J]. Opto-Electronic Engineering, 2020, 47(6): 200093
    Download Citation