• Journal of Infrared and Millimeter Waves
  • Vol. 37, Issue 2, 129 (2018)
HUANG Wen-Chao1、*, WANG Xiao-Fang1, CHEN Xiao-Shuang1, LU Wei1, and FONG Ching-Yao2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2018.02.001 Cite this Article
    HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, LU Wei, FONG Ching-Yao. Understanding ferromagnetism in Carbon-doped rutile TiO2: first-principles calculations[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 129 Copy Citation Text show less
    References

    [1] Shan G B, Demopoulos G P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer [J]. Adv. Mater. 2010, 22: 4373.

    [2] Takeshita K, Yamakata A, Ishibashi T, et al. Transient IR absorption study of charge carriers photogenerated in sulfur-doped TiO2 [J]. J Photochem Phytobiol A: Chem. 2006, 177: 269-75.

    [3] Ratanatawanate C, Xiong C R, Balkus K J. Fabrication of PbS quantum dot doped TiO2 nanotubes [J]. ACS Nano. 2008, 2:1682-1688.

    [4] Janisch R, Gopal P, Spaldin N A, Transition metal-doped TiO2 and ZnO—present status of the field [J]. J. Phys.: Condens. Matter. 2005, 17: R657.

    [5] Mallia G, Harrison N M. Magnetic moment and coupling mechanism of iron-doped rutile TiO2 from first principles [J]. Phys. Rev. B, 2007, 75: 165201.

    [6] Hu S J, Yan S S, Yao X X, et al. Electronic structure and magnetic properties of Fe0.125Sn0.875O2 [J]. Phys. Rev. B, 2007, 75: 094412.

    [7] Komen C V, Thurber A, Reddy K M, et al. Structure-magnetic property relationship in transition metal (M=V,Cr,Mn,Fe,Co,Ni)(M=V,Cr,Mn,Fe,Co,Ni) doped SnO2SnO2 nanoparticles [J]. J. Appl. Phys. 2008, 103: 07D141.

    [8] Philip J, Punnoose A, Kim B I, et al. Carrier-controlled ferromagnetism in transparent oxide semiconductors [J]. Nat. Mter. 2006, 5: 298.

    [9] Coey J M D, Venkatesan M, Stamenov P, et al. Magnetism in hafnium dioxide [J]. Phys. Rev. B, 2005, 72: 024450.

    [10] Bai H L, He S M, Shuai X T, Ferromagnetism, variable range hopping and anomalous Hall effect in epitaxial Co:ZnO thin film [J]. Chin. Phys. B. 2012, 21: 107201.

    [11] Dai Y Y, Yan S S, Tian Y F, et al. Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors [J]. Chin. Phys. B, 2010,19(3):037203.

    [12] Jia C W, Xie E Q, Zhao J G, et al. Visible and near-infrared photoluminescences of europium-doped titania film [J]. J. Appl. Phys. 2006, 100: 023529.

    [13] Komuro S, Katsumata T, Kokai H, et al. Change in photoluminescence from Er-doped TiO2 thin films induced by optically assisted reduction[J]. Appl. Phys. Lett. 2002, 81: 4733.

    [14] Gao H T, Ding C H, Dai D M, Density functional characterization of C-doped anatase TiO2 with different oxidation state [J]. Journal of Molecular Structure: THEOCHEM, 2010, 944: 156-162.

    [15] Tian F H, Liu C B, Zhang D J, et al. On the Origin of the Visible-Light Activity of Titanium Dioxide Doped with Carbonate Species [J]. Chem. Phys. Chem 2010, 11: 3269-3272.

    [16] Wang P, Liu Z R, Lin F, et al. Optimizing photoelectrochemical properties of TiO2 by chemical codoping [J]. Phys. Rev. B 2010, 82: 193103.

    [17] Zhang R H, Wang Q, Li Q, et al. First-principle calculations on optical properties of C-N-doped and C-N-codoped anatase TiO2 [J]. Physica B, 2011, 406: 3417-3422.

    [18] Zainullina V M, Zhukov V P , Korotin M A, et al. Effect of doping by boron, carbon, and nitrogen atoms on the magnetic and photocatalytic properties of anatase [J]. Physics of the Solid State, 2011,53(7):1353-1361.

    [19] Long R, English N G. Density functional theory studies of doping in titania [J]. Molecular Simulation 36, Nos. 2010,7-8:618-632.

    [20] Yu Z, Li X, Long X, et al. The study of a new n/p tunnel recombination junction and its application in a-Si:H/μc-Si:H tandem solar cells [J]. Chin. Phys. B. 2009, 18: 1674-1678.

    [21] Sedkya A, El-Suheel E. Structural and electronic characteristics of pure and doped ZnO varistors [J]. Chin. Phys. B, 2012,21(11):116103.

    [22] Duhalde S, Vignolo M F, Golmar F, et al. Appearance of room-temperature ferromagnetism in Cu-doped TiO2-delta films [J]. Phys. Rev. B, 2005, 72: 161313.

    [23] Elfimov I S, Rusydi A, Csiszar S I, et al. Magnetizing oxides by substituting nitrogen for oxygen [J]. Phys. Rev. Lett. 2007, 98: 137202.

    [24] Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO[J]. Phys. Rev. Lett. 2007, 99:127201.

    [25] Shen L, Wu R Q, Pan H, et al. Mechanism of ferromagnetism in nitrogen-doped ZnO: First-principle calculations [J]. Phys. Rev. B. 2008, 78:073306.

    [26] Yu C F, Lin T J, Sun S J, et al. Origin of ferromagnetism in nitrogen embedded ZnO: N thin films [J]. J Phys D: Appl. Phys. 2007, 40: 6497.

    [27] Bannikov V V, I. R. Shein I R, V. L. Kozhevnikov V L, et al. Magnetism without magnetic ions in non-magnetic perovskites SrTiO3, SrZrO3 and SrSnO3 [J]. J. Magn. Magn. Mater. 2008, 320: 936.

    [28] Wu R Q, Liu L, Peng G W, et al. Magnetism in BN nanotubes induced by carbon doping [J]. Appl. Phys. Lett. 2005, 86:122510.

    [29] Ohldag H, Tyliszczak T, Hhne R, et al. pi-Electron ferromagnetism in metal-free carbon probed by soft x-ray dichroism [J]. Phys. Rev. Lett. 2007, 98:187204.

    [30] Blchl P E, Projector augmented-wave method[J].Phys. Rev. B. 1994, 50: 17953.

    [31] Kresse G, Furtmüller J, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169.

    [32] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett. 1996, 77: 3865.

    [33] Monkhorst H J, Pack J D, Special points for brillouin-zone integrations [J]. Phys. Rev. B. 1976, 13: 5188.

    HUANG Wen-Chao, WANG Xiao-Fang, CHEN Xiao-Shuang, LU Wei, FONG Ching-Yao. Understanding ferromagnetism in Carbon-doped rutile TiO2: first-principles calculations[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 129
    Download Citation