• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170607 (2019)
Yongshi Cheng, Gui Chen, and Jinyan Li*
Author Affiliations
  • Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/LOP56.170607 Cite this Article Set citation alerts
    Yongshi Cheng, Gui Chen, Jinyan Li. Research Progress of High-Power Erbium-Ytterbium Codoped Fiber Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170607 Copy Citation Text show less
    References

    [1] Richardson D J, Nilsson J, Clarkson W A. High power fiber lasers: current status and future perspectives [Invited][J]. Journal of the Optical Society of America B, 27, B63-B92(2010).

    [2] Chen X L, Lou F G, He Y et al. Home-made 10 kW fiber laser with high efficiency[J]. Acta Optica Sinica, 39, 0336001(2019).

    [3] Philippov V N, Sahu J K, Codemard C A et al. All-fiber 1.15-mJ pulsed eye-safe optical source[J]. Proceedings of SPIE, 5335, 1-7(2004).

    [4] Kehayas E, Stampoulidis L, Henderson P et al. The European project Hippo high-power photonics for satellite laser communications and on-board optical processing[J]. Proceedings of SPIE, 10563, 105635C(2014).

    [5] Dolfi-Bouteyre A, Canat G, Valla M et al. Pulsed 1.5-μm LIDAR for axial aircraft wake vortex detection based on high-brightness large-core fiber amplifier[J]. IEEE Journal of Selected Topics in Quantum Electronics, 15, 441-450(2009).

    [6] Bloom S, Korevaar E, Schuster J et al. Understanding the performance of free-space optics[Invited][J]. Journal of Optical Networking, 2, 178-200(2003).

    [7] Supradeepa V R, Nicholson J W. Power scaling of high-efficiency 1.5 μm cascaded Raman fiber lasers[J]. Optics Letters, 38, 2538-2541(2013).

    [8] Feng Y, Jiang H W, Zhang L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 44, 0201005(2017).

    [9] Zhang J, Fromzel V, Dubinskii M. Resonantly cladding-pumped Yb-free Er-doped LMA fiber laser with record high power and efficiency[J]. Optics Express, 19, 5574-5578(2011).

    [10] Kotov L V, Likhachev M E, Bubnov M M et al. Yb-free Er-doped all-fiber amplifier cladding-pumped at 976 nm with output power in excess of 100 W[J]. Proceedings of SPIE, 8961, 89610X(2014).

    [11] Jebali M A, Maran J N. LaRochelle S, et al. A 103 W high efficiency in-band cladding-pumped 1593 nm all-fiber erbium-doped fiber laser. [C]∥Conference on Lasers and Electro-Optics 2012, May 6-11, 2012, San Jose, California, United States. Washington, D.C.: OSA, JTh1I, 3(2012).

    [12] Lin H Q, Feng Y J, Feng Y T et al. 656 W Er-doped, Yb-free large-core fiber laser[J]. Optics Letters, 43, 3080-3083(2018).

    [13] Jeong Y, Yoo S, Codemard C A et al. Erbium∶ytterbium codoped large-core fiber laser with 297-W continuous-wave output power[J]. IEEE Journal of Selected Topics in Quantum Electronics, 13, 573-579(2007).

    [14] Philippov V, Codemard C, Jeong Y et al. High-energy in-fiber pulse amplification for coherent lidar applications[J]. Optics Letters, 29, 2590-2592(2004).

    [15] de Varona O, Fittkau W, Booker P et al. . Single-frequency fiber amplifier at 1.5 μm with 100 W in the linearly-polarized TEM00 mode for next-generation gravitational wave detectors[J]. Optics Express, 25, 24880-24892(2017).

    [16] Townsend J E, Poole S B, Payne D N. Solution-doping technique for fabrication of rare-earth-doped optical fibres[J]. Electronics Letters, 23, 329-331(1987).

    [17] Carter A L G, Poole S B, Sceats M G. A flash-condensation technique for the fabrication of high phosphorous content rare-earth doped fibres. [C]∥Optical Amplifiers and Their Applications, June 24, 1992, Sante Fe, New Mexico, United States. Washington, D.C.: OSA, PD6(1992).

    [18] Vienne G G, Brocklesby W S, Brown R S et al. Role of aluminum in ytterbium-erbium codoped phosphoaluminosilicate optical fibers[J]. Optical Fiber Technology, 2, 387-393(1996).

    [19] Liu X J, Li J Y, Jiang Z W et al. Manufacture of Er 3+/Yb 3+ co-doped fiber and its spectrum analysis [J]. Study on Optical Communications, 52-54(2004).

    [20] Yi Y Q, Zhou S W, Ning D et al. Study of the ytterbium-erbium co-doped double-clad optical fibers[J]. Laser & Infrared, 37, 259-261(2007).

    [21] Zhang Z X, Jiang Z W, Peng J G et al. Fabrication and characterization of Er 3+∶Yb 3+ co-doped phosphosilicate fibers [J]. Journal of Inorganic Materials, 27, 485-488(2012).

    [22] Steinke M, Croteau A, Paré C et al. Co-seeded Er 3+∶Yb 3+ single frequency fiber amplifier with 60 W output power and over 90% TEM00 content [J]. Optics Express, 22, 16722-16730(2014).

    [23] Khudyakov M M, Lobanov A S, Lipatov D S et al. Single-mode large-mode-area Er-Yb fibers with core based on phosphorosilicate glass highly doped with fluorine[J]. Laser Physics Letters, 16, 025105(2019).

    [24] Snitzer E, Po H, Hakimi F et al. Erbium fiber laser amplifier at 1.55 μm with pump at 1.49 μm and Yb sensitized Er oscillator. [C]∥Optical Fiber Communication, January 25, 1988, New Orleans, Louisiana,United States. Washington, D.C.: OSA, PD2(1988).

    [25] Minelly J D, Barnes W L, Laming R I et al. Diode-array pumping of Er 3+/Yb 3+ co-doped fiber lasers and amplifiers [J]. IEEE Photonics Technology Letters, 5, 301-303(1993).

    [26] Sahu J K, Jeong Y, Richardson D J et al. A 103 W erbium-ytterbium co-doped large-core fiber laser[J]. Optics Communications, 227, 159-163(2003).

    [27] Jebali M A, Maran J N. LaRochelle S. 264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping[J]. Optics Letters, 39, 3974-3977(2014).

    [28] Zhan S B, Zhao S H, Dong S F et al. The experimental study of the Er 3+/Yb 3+ co-doped double clad fiber laser [J]. Laser Technology, 27, 606-608(2003).

    [29] Chen W T. Theoretical and experimental study on high power erbium-ytterbium co-doped fiber laser and superfluorescence output[D]. Shanghai: Fudan University, 15-19(2013).

    [30] Jeong Y, Sahu J K, Richardson D J et al. Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power[J]. Electronics Letters, 39, 1717-1719(2003).

    [31] Creeden D, Pretorius H, Limongelli J et al. Single frequency 1560 nm Er∶Yb fiber amplifier with 207 W output power and 50.5% slope efficiency[J]. Proceedings of SPIE, 9728, 97282L(2016).

    [32] Alegria C, Jeong Y, Codemard C et al. 83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fiber[J]. IEEE Photonics Technology Letters, 16, 1825-1827(2004).

    [33] Jeong Y, Sahu J K. Soh D B S, et al. High-power tunable single-frequency single-mode erbium∶ytterbium codoped large-core fiber master-oscillator power amplifier source[J]. Optics Letters, 30, 2997-2999(2005).

    [34] Spiegelberg C, Geng J H, Hu Y D et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 22, 57-62(2004).

    [35] Hu Y, Jiang S, Luo T et al. Performance of high-concentration Er 3+-Yb 3+ codoped phosphate fiber amplifiers [J]. IEEE Photonics Technology Letters, 13, 657-659(2001).

    [36] Xu S H, Yang Z M, Feng Z M et al. Efficient fibre amplifiers based on a highly Er 3+/Yb 3+ codoped phosphate glass-fibre [J]. Chinese Physics Letters, 26, 047806(2009).

    [37] Xu S H, Yang Z M, Liu T et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 18, 1249-1254(2010).

    [38] Yang C S, Xu S H, Mo S P et al. 10.9 W kHz-linewidth one-stage all-fiber linearly-polarized MOPA laser at 1560 nm[J]. Optics Express, 21, 12546-12551(2013).

    [39] Bai X L, Sheng Q, Zhang H W et al. High-power all-fiber single-frequency erbium-ytterbium co-doped fiber master oscillator power amplifier[J]. IEEE Photonics Journal, 7, 7103106(2015).

    [40] Tang X Y, Han Q, Song H L et al. Numerical investigation of the thermal effect on Yb-cavity-copumped Er/Yb codoped fiber amplifiers[J]. Applied Optics, 57, 1541-1547(2018).

    [41] Du X Y, Su R T, Wang X L et al. Research on fiber laser performance working at different temperatures[J]. Chinese Journal of Lasers, 42, s102004(2015).

    [42] Yang C S, Guan X C, Zhao Q L et al. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser[J]. Optics Express, 25, 13324-13331(2017).

    [43] Hu Z T, He B, Zhou J et al. Research progress in thermal effect of high power fiber lasers[J]. Laser & Optoelectronics Progress, 53, 080002(2016).

    [44] Zheng Y, Li P, Zhu Z D et al. Progress in high-power narrow-linewidth fiber lasers[J]. Laser & Optoelectronics Progress, 55, 080002(2018).

    [45] Mermelstein M. -01-25[2019-06-12]. http:∥www.google.co.in/patents/US7733561.(2007).

    [46] Kuhn V, Weßels P, Neumann J et al. Stabilization and power scaling of cladding pumped Er∶Yb-codoped fiber amplifier via auxiliary signal at 1064 nm[J]. Optics Express, 17, 18304-18311(2009).

    [47] Robin T, Gotter T, Barnini A et al. Evidence of photo-darkening in co-doped erbium-ytterbium double-clad fibers operated at high-output power[J]. Proceedings of SPIE, 10528, 1052815(2018).

    [48] Shirakawa A, Suzuki H, Tanisho M et al. Yb-ASE-free Er amplification in short-wavelength filtered Er∶Yb photonic-crystal fiber. [C]∥Optical Fiber Communication Conference 2008, February 24-28, 2008, San Diego, California, United States. Washington, D.C.: Optical Society of America, OthN2(2008).

    [49] Ouyang D Q, Guo C Y, Ruan S C et al. Yb band parasitic lasing suppression in Er/Yb-co-doped pulsed fiber amplifier based on all-solid photonic bandgap fiber[J]. Applied Physics B, 114, 585-590(2014).

    [50] Limongelli J R, Setzler S D, Creeden D. Experimental and numerical analysis of high power Er∶Yb co-doped fiber amplifiers[J]. Proceedings of SPIE, 10083, 100831O(2017).

    [51] Booker P, Caspary R, Neumann J et al. Pump wavelength dependence of ASE and SBS in single-frequency EYDFAs[J]. Optics Letters, 43, 4647-4650(2018).

    [52] Han Q, Ning J P, Sheng Z X. Numerical investigation of the ASE and power scaling of cladding-pumped Er-Yb codoped fiber amplifiers[J]. IEEE Journal of Quantum Electronics, 46, 1535-1541(2010).

    [53] Sobon G, Kaczmarek P, Antonczak A et al. Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers[J]. Optics Express, 19, 19104-19113(2011).

    [54] Sobon G, Sliwinska D. AbramskiK M, et al. 10 W single-mode Er/Yb co-doped all-fiber amplifier with suppressed Yb-ASE[J]. Laser Physics Letters, 11, 025103(2014).

    [55] Han Q, Yao Y Z, Chen Y F et al. Highly efficient Er/Yb-codoped fiber amplifier with an Yb-band fiber Bragg grating[J]. Optics Letters, 40, 2634-2636(2015).

    [56] Han Q, Yan W C, Yao Y Z et al. Optimal design of Er/Yb co-doped fiber amplifiers with an Yb-band fiber Bragg grating[J]. Photonics Research, 4, 53-56(2016). http://www.opticsjournal.net/Articles/Abstract?aid=OJ160928000011jPmSoV

    [57] Zhao X R, Han Q, Wang D et al. Optimal design of high-power cascade co-pumping Er/Yb-codoped fiber lasers[J]. Optics Letters, 44, 1100-1103(2019).

    [58] Han Q, Yao Y Z, Tang X Y et al. Highly efficient Er-Yb codoped double-clad fiber amplifier with an Yb-band resonant cavity[J]. Laser Physics Letters, 14, 025105(2017).

    Yongshi Cheng, Gui Chen, Jinyan Li. Research Progress of High-Power Erbium-Ytterbium Codoped Fiber Laser[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170607
    Download Citation