• Laser & Optoelectronics Progress
  • Vol. 59, Issue 3, 0314002 (2022)
Huanxia Qiu1, Wenbin Yu2, Jianli Song1、*, Jia Deng1, Yunyi Li1, and Qilin Deng3
Author Affiliations
  • 1Beijing Key Laboratory of Photoelectric Testing Technology, Beijing Information Science & Technology University, Beijing 100192, China
  • 2CRRC Yongji Electric Co., Ltd. Xi'an Branch, Xi'an , Shaanxi 710016, China
  • 3School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • show less
    DOI: 10.3788/LOP202259.0314002 Cite this Article Set citation alerts
    Huanxia Qiu, Wenbin Yu, Jianli Song, Jia Deng, Yunyi Li, Qilin Deng. Numerical Simulation of Laser Cladding 316L/H13+20%WC Composite Coating on H13 Steel Surface[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314002 Copy Citation Text show less
    Thermo-physical parameters of 316L and H13+20%WC. (a)-(c) 316L; (d)-(f) H13+20%WC
    Fig. 1. Thermo-physical parameters of 316L and H13+20%WC. (a)-(c) 316L; (d)-(f) H13+20%WC
    Finite element model and mesh division
    Fig. 2. Finite element model and mesh division
    Diagram of nodes selection for temperature gradient calculation
    Fig. 3. Diagram of nodes selection for temperature gradient calculation
    Temperature gradient of selected nodes change with time. (a) Node 1; (b) node 2; (c) node 3; (d) curves of maximum temperature gradient with preheating temperature for node 1 and node 3
    Fig. 4. Temperature gradient of selected nodes change with time. (a) Node 1; (b) node 2; (c) node 3; (d) curves of maximum temperature gradient with preheating temperature for node 1 and node 3
    Variation of temperature gradient of selected nodes change with time. (a) (b) Node 1; (c) (d) node 2; (e) (f) node 3
    Fig. 5. Variation of temperature gradient of selected nodes change with time. (a) (b) Node 1; (c) (d) node 2; (e) (f) node 3
    Diagram of nodes selection for temperature variation rate calculation
    Fig. 6. Diagram of nodes selection for temperature variation rate calculation
    Curves of temperature change with time at different preheating temperatures of selected nodes. (a) Node 4; (b) node 5
    Fig. 7. Curves of temperature change with time at different preheating temperatures of selected nodes. (a) Node 4; (b) node 5
    Curves of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Fig. 8. Curves of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Curves of variation of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Fig. 9. Curves of variation of temperature variation rate at cladding pool edge change with time of selected nodes. (a) Node 4; (b) node 5
    Microstructure of laser cladding forming 316L/H13+20%WC composite coatings under different conditions of substrate. (a) Crack at the cladding layer bonding under room temperature of substrate; (b) bottom microstructure of 316L cladding layer under 200 ℃ preheating of substrate; (c) microstructure of the cladding layer bonding under 200 ℃ preheating of substrate; (d) top microstructure of H13+20%WC cladding layer under 200 ℃ preheating of substrate
    Fig. 10. Microstructure of laser cladding forming 316L/H13+20%WC composite coatings under different conditions of substrate. (a) Crack at the cladding layer bonding under room temperature of substrate; (b) bottom microstructure of 316L cladding layer under 200 ℃ preheating of substrate; (c) microstructure of the cladding layer bonding under 200 ℃ preheating of substrate; (d) top microstructure of H13+20%WC cladding layer under 200 ℃ preheating of substrate
    Temperature /℃Thermal conductivity /(W⋅m-1⋅℃-1Specific heat /(J⋅kg-1⋅℃-1Density /(kg⋅m-3
    2517.14527977
    10017.94757935
    40021.35337771
    60023.65657663
    80025.85987556
    100028.16307450
    120030.36647341
    140032.47947202
    160033.88266854
    180037.18306689
    Table 1. Thermo-physical parameters of H13 steel

    Preheating

    temperature /℃

    Variation of temperature gradient /(℃⋅m-1

    Node 1

    grad-Y

    Node 1

    grad-Z

    Node 2

    grad-Y

    Node 2

    grad-Z

    Node 3

    grad-Y

    Node 3

    grad-Z

    100-6844-2788-1964.5-1206.5-617-1399
    200-12451-6299-4024.0-2726.7-1562-3433
    300-13525-9808-6008.2-4195.5-2451-5495
    Table 2. Maximum of variation of temperature gradient of selected nodes
    Cladding materialMass fraction /%
    CCrSiMnMoVFeNi
    316L stainless steel powder0.03181.223-Bal.12
    H13 steel powder0.32—0.454.75—5.50.80—1.20.20—0.51.10—1.750.80—1.2Bal.-
    Table 3. Composition of experiment materials
    Huanxia Qiu, Wenbin Yu, Jianli Song, Jia Deng, Yunyi Li, Qilin Deng. Numerical Simulation of Laser Cladding 316L/H13+20%WC Composite Coating on H13 Steel Surface[J]. Laser & Optoelectronics Progress, 2022, 59(3): 0314002
    Download Citation