• Chinese Optics Letters
  • Vol. 20, Issue 3, 031702 (2022)
Yuxi Shang1, Hailang Dai1、*, Daopeng Dai2, Jinmao Gu3, Meng Zhang1, Qiheng Wei1, and Xianfeng Chen1、4、5、6、**
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
  • 3The Affiliated Hospital of Tianjin Chinese Medical Institute, Tongji University, Shanghai 200092, China
  • 4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 5Jinan Institute of Quantum Technology, Jinan 250101, China
  • 6Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202220.031702 Cite this Article Set citation alerts
    Yuxi Shang, Hailang Dai, Daopeng Dai, Jinmao Gu, Meng Zhang, Qiheng Wei, Xianfeng Chen. Secondary structure changes of ox-LDL by photoirradiation in an optofluidic resonator[J]. Chinese Optics Letters, 2022, 20(3): 031702 Copy Citation Text show less
    References

    [1] J. Sanz, Z. Fayad. Imaging of atherosclerotic cardiovascular disease. Nature, 451, 953(2008).

    [2] J. L. Aldons. Atherosclerosis. Nature, 407, 233(2000).

    [3] P. Libby, P. Ridker, G. Hansson. Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317(2011).

    [4] S. Tatsuya, K. Noriaki, A. Takuma, M. Hideaki, H. Hajime, A. Yuichi, T. Takeshi, M. Soichi, K. Yoshimoto, K. Toru, M. Tomoh. An endothelial receptor for oxidized low-density lipoprotein. Nature, 386, 73(1997).

    [5] S. Parthasarathy, A. Raghavamenon, M. O. Garelnabi, N. Santanam. Oxidized low-density lipoprotein. Methods Mol. Biol., 610, 403(2010).

    [6] M. Tamminen, G. Mottino, J. Qiao, J. Breslow, J. Frank. Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arterioscler. Thromb. Vasc. Biol., 19, 847(1999).

    [7] K. Nakajima, T. Nakano, A. Tanaka. The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clinica Chimica Acta, 367, 36(2006).

    [8] M. Quinn, S. Parthasarathy, L. Fong, D. Steinberg. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc. Natl. Acad. Sci. U. S. A., 84, 2995(1987).

    [9] S. Mitra, A. Deshmukh, R. Sachdeva, J. Lu, J. L. Mehta. Oxidized low-density lipoprotein and atherosclerosis implications in antioxidant therapy. Am. J. Med. Sci., 342, 135(2011).

    [10] T. Andreja, I. Resanovic, S. Julijana, R. Djordje, A. M. Shaker, C. M. Desanka, J. Danimir, R. I. Esma. Oxidized low-density lipoprotein as a biomarker of cardiovascular diseases. Crit. Rev. Clin. Lab. Sci., 52, 70(2015).

    [11] S. Choi, R. Harkewicz, J. H. Lee, A. Boullier, F. Almazan, A. C. Li, J. L. Witztum, Y. S. Bae, I. M. Yury. Lipoprotein accumulation in macrophages via toll-like receptor-4-dependent fluid phase uptake. Circ. Res., 104, 1355(2009).

    [12] R. Carnevale, S. Bartimoccia, C. Nocella, D. S. Serena, L. Lorenzo, I. Giulio, L. Elisabetta, B. Valentina, D. B. Maria, D. M. Luigi, P. Pasquale, V. Francesco. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism. Atherosclerosis, 237, 108(2014).

    [13] G. Obermayer, T. Afonyushkin, C. J. Binder. Oxidized low-density lipoprotein in inflammation-driven thrombosis. J. Thromb. Haemost., 16, 418(2018).

    [14] S. A. Thorne, S. E. Abbot, P. G. Winyard, D. R. Blake, P. G. Mills. Extent of oxidative modification of low density lipoprotein determines the degree of cytotoxicity to human coronary artery cells. Heart, 75, 11(1996).

    [15] H. Kataoka, N. Kume, S. Miyamoto, M. Minami, M. Morimoto, K. Hayashida, N. Hashimoto, T. Kita. Oxidized LDL modulates Bax/Bcl-2 through the lectinlike Ox-LDL receptor-1 in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol., 21, 955(2001).

    [16] F. Sigala, K. Athanassios, S. Paraskevi, F. Konstantinos, M. Sophia, K. I. Efstathios, G. G. Vassilis, A. Ioanna. Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg., 52, 704(2010).

    [17] S. M. Marcovina, F. Crea, J. Davignon, J. C. Kaski, W. Koenig, U. Landmesser, P. L. Pieri, M. J. Schulz, L. J. Shaw, J. Sobesky. Biochemical and bioimaging markers for risk assessment and diagnosis in major cardiovascular diseases: a road to integration of complementary diagnostic tools. J. Intern. Med., 261, 214(2007).

    [18] H. Itabe, M. Ueda. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J. Atheroscler. Thromb., 14, 1(2007).

    [19] A. Sato, Y. Yamazaki, K. Ebina. A method for in vitro measurement of oxidized low-density lipoprotein in blood, using its antibody, fluorescence-labeled heptapeptide and polyethylene glycol. J. Fluoresc., 27, 1985(2017).

    [20] A. Zinellu, S. Salvatore, G. Franca, L. Fiorenza, P. Valeria, M. P. Giovanni, T. Bruna, D. Luca, C. Ciriaco. Applications on the monitoring of oxidative modification of LDL by capillary electrophoresis: a comparison with spectrophotometer assay. Talanta, 64, 428(2004).

    [21] J. Stocks, N. Miller. Analysis of apolipoproteins and lipoproteins by capillary electrophoresis. Electrophoresis, 20, 2118(1999).

    [22] H. Hinterwirth, G. Stübiger, W. Lindner, M. Lämmerhofer. Gold nanoparticle-conjugated anti-oxidized low-density lipoprotein antibodies for targeted lipidomics of oxidative stress biomarkers. Anal. Chem., 85, 8376(2013).

    [23] E. Haller, G. Stübiger, D. Lafitte, W. Lindner, M. Lämmerhofer. Chemical recognition of oxidation-specific epitopes in low-density lipoproteins by a nanoparticle based concept for trapping, enrichment, and liquid chromatography-tandem mass spectrometry analysis of oxidative stress biomarkers. Anal. Chem., 86, 9954(2014).

    [24] H. Dai, L. Yuan, C. Yin, Z. Cao, X. Chen. Direct visualizing the spin Hall effect of light via ultrahigh-order modes. Phys. Rev. Lett., 124, 053902(2020).

    [25] H. Li, Z. Cao, H. Lu, Q. Shen. Free-space coupling of a light beam into a symmetrical metal-cladding optical waveguide. Appl. Phys. Lett., 83, 2757(2003).

    [26] C. Yin, X. Kan, K. Guo, T. Wang, J. Xu, Q. Han, J. Wu, Z. Cao. Highly twisted M-line of a vortex beam due to the coupling of ultrahigh-order modes. Chin. Opt. Lett., 19, 071403(2021).

    [27] G. Hansson. Mechanisms of disease-inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med., 352, 1685(2005).

    [28] A. Halil, P. Bahar. Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues. Chin. Opt. Lett., 19, 011701(2021).

    [29] Y. H. Chen, J. T. Yang, K. H. Chau. Determination of the helix and β form of proteins in aqueous solution by circular dichroism. Biochemistry, 13, 3350(1974).

    Yuxi Shang, Hailang Dai, Daopeng Dai, Jinmao Gu, Meng Zhang, Qiheng Wei, Xianfeng Chen. Secondary structure changes of ox-LDL by photoirradiation in an optofluidic resonator[J]. Chinese Optics Letters, 2022, 20(3): 031702
    Download Citation