• Acta Optica Sinica
  • Vol. 42, Issue 2, 0216001 (2022)
Yanhong Liu1、*, Mina Ren2, Lijuan Dong1, Xiaoqiang Su1, and Yunlong Shi1
Author Affiliations
  • 1Shanxi Province key Laboratory of Microstructure Electromagnetic Functional Materials, Shanxi Datong University, Datong, Shanxi 0 37009, China
  • 2Key Laboratory of Advanced Micro-Structure Materials, Ministry of Education, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • show less
    DOI: 10.3788/AOS202242.0216001 Cite this Article Set citation alerts
    Yanhong Liu, Mina Ren, Lijuan Dong, Xiaoqiang Su, Yunlong Shi. Novel Electromagnetic Propagation in Hyperbolic Metamaterials with Flat Iso-Frequency Planes[J]. Acta Optica Sinica, 2022, 42(2): 0216001 Copy Citation Text show less
    References

    [1] Poddubny A, Iorsh I, Belov P et al. Hyperbolic metamaterials[J]. Nature Photonics, 7, 948-957(2013).

    [2] Ferrari L, Wu C, Lepage D et al. Hyperbolic metamaterials and their applications[J]. Progress in Quantum Electronics, 40, 1-40(2015).

    [3] Guo Z W, Jiang H T, Chen H. Hyperbolic metamaterials: from dispersion manipulation to applications[J]. Journal of Applied Physics, 127, 071101(2020).

    [4] Hu G W, Krasnok A, Mazor Y et al. Moiré hyperbolic metasurfaces[J]. Nano Letters, 20, 3217-3224(2020).

    [5] Sun S L, He Q, Hao J M et al. High-efficiency manipulations on electromagnetic waves with metasurfaces[J]. Acta Optica Sinica, 41, 0123003(2021).

    [6] Deng Z L, Li F J, Shi T et al. Metagratings for controlling diffractive optical fields: physics and applications[J]. Acta Optica Sinica, 41, 0823011(2021).

    [7] Wang G C, Hu B, Zhang Y. Dynamic metasurface design and functional devices[J]. Laser & Optoelectronics Progress, 58, 0900001(2021).

    [8] Mahmoodi M, Tavassoli S H, Takayama O et al. Existence conditions of high-k modes in finite hyperbolic metamaterials[J]. Laser & Photonics Reviews, 13, 1800253(2019).

    [9] Guo Z W, Long Y, Jiang H T et al. Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources[J]. Advanced Photonics, 3, 036001(2021).

    [10] Folland T G, Fali A, White S T et al. Reconfigurable infrared hyperbolic metasurfaces using phase change materials[J]. Nature Communications, 9, 4371(2018).

    [11] Dai S Y, Tymchenko M, Yang Y F et al. Manipulation and steering of hyperbolic surface polaritons in hexagonal boron nitride[J]. Advanced Materials, 30, 1706358(2018).

    [12] Caldwell J D, Aharonovich I, Cassabois G et al. Photonics with hexagonal boron nitride[J]. Nature Reviews Materials, 4, 552-567(2019).

    [13] Galfsky T. Krishnamoorthy H N S, Newman W, et al. Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction[J]. Optica, 2, 62-65(2015).

    [14] Feng K J, Sivco D L, Hoffman A J. Engineering optical emission in sub-diffraction hyperbolic metamaterial resonators[J]. Optics Express, 26, 4382-4391(2018).

    [15] Sreekanth K V, Alapan Y. ElKabbash M, et al. Extreme sensitivity biosensing platform based on hyperbolic metamaterials[J]. Nature Materials, 15, 621-627(2016).

    [16] Sreekanth K V, Mahalakshmi P, Han S et al. Brewster mode-enhanced sensing with hyperbolic metamaterial[J]. Advanced Optical Materials, 7, 1900680(2019).

    [17] Sreekanth K V, Ouyang Q L, Sreejith S et al. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing[J]. Advanced Optical Materials, 7, 1900081(2019).

    [18] Liu X Z, Kong W J, Wang C T et al. Bulk plasmon polariton based structured illumination microscopy by utilizing hyperbolic metamaterials[J]. Journal of Physics D: Applied Physics, 54, 285103(2021).

    [19] Wu Q N, Wang J Y, Sun B Y et al. New mechanism for optical super-resolution via anisotropic near-zero index metamaterials[J]. Journal of Optics, 23, 055101(2021).

    [20] Biehs S A, Menon V M, Agarwal G S. Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial[J]. Physical Review B, 93, 245439(2016).

    [21] Newman W D, Cortes C L, Afshar A et al. 4(10): eaar5278(2018).

    [22] Huang Z Y, Norris T B, Narimanov E. Nanoscale finger printing with hyperbolic metamaterials[J]. APL Photonics, 4, 026103(2019).

    [23] Enoch S, Tayeb G, Sabouroux P et al. A metamaterial for directive emission[J]. Physical Review Letters, 89, 213902(2002).

    [24] Wu F, Lu G, Xue C H et al. Experimental demonstration of angle-independent gaps in one-dimensional photonic crystals containing layered hyperbolic metamaterials and dielectrics at visible wavelengths[J]. Applied Physics Letters, 112, 041902(2018).

    [25] Tong S S, Ren C Y, Tao J et al. Anisotropic index-near-zero metamaterials for enhanced directional acoustic emission[J]. Journal of Physics D: Applied Physics, 53, 265102(2020).

    [26] Eleftheriades G V, Iyer A K, Kremer P C. Planar negative refractive index media using periodically L-C loaded transmission lines[J]. IEEE Transactions on Microwave Theory and Techniques, 50, 2702-2712(2002).

    [27] Caloz C, Itoh T. Electromagnetic metamaterials: transmission line theory and microwave applications[M]. Hoboken: John Wiley & Sons, Inc.(2005).

    [28] Sedighy S H, Guclu C, Campione S et al. Wideband planar transmission line hyperbolic metamaterial for subwavelength focusing and resolution[J]. IEEE Transactions on Microwave Theory and Techniques, 61, 4110-4117(2013).

    [29] Jiang H T, Liu W W, Yu K et al. Experimental verification of loss-induced field enhancement and collimation in anisotropicμ-near-zero metamaterials[J]. Physical Review B, 91, 045302(2015).

    Yanhong Liu, Mina Ren, Lijuan Dong, Xiaoqiang Su, Yunlong Shi. Novel Electromagnetic Propagation in Hyperbolic Metamaterials with Flat Iso-Frequency Planes[J]. Acta Optica Sinica, 2022, 42(2): 0216001
    Download Citation