• Acta Photonica Sinica
  • Vol. 47, Issue 9, 916005 (2018)
WANG Kai*, LI Xiao-hong, ZHANG Yan-bing, WEN Cai, and LIU De-xiong
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/gzxb20184709.0916005 Cite this Article
    WANG Kai, LI Xiao-hong, ZHANG Yan-bing, WEN Cai, LIU De-xiong. Study of Titanium-doped Silicon Films Prepared by Magnetron Sputtering and Nanosecond Pulsed Laser[J]. Acta Photonica Sinica, 2018, 47(9): 916005 Copy Citation Text show less
    References

    [1] GREEN M A, EMERY K, HISHIKAWA Y, et al. Solar cell efficiency tables (version 49)[J]. Progress in Photovoltaics Research & Applications, 2017, 25(7): 905-913.

    [2] CSUTAK S M, SCHAUB J D, WU W E, et al. High-speed monolithically integrated silicon photoreceivers fabricated in 130-nm CMOS technology[J]. Journal of Lightwave Technology, 2002, 20(9): 1724-1729.

    [3] GREEN M A. Third generation photovoltaics: advanced solar energy conversion[J]. Physics Today, 2006, 57(12): 71-72.

    [4] LUQUE A, MARTI A, STANLEY C. Understanding intermediate-band solar cells[J]. Nature Photonics, 2012, 6(3): 146-152.

    [5] LUQUE A, MARTI A. Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels[J]. Physical Review Letters, 1997, 78(26): 5014-5017.

    [6] WANG Ke-fan, SHAO He-zhu, LIU Kong, et al. Possible atomic structures responsible for the sub-bandgap absorption of chalcogen-hyperdoped silicon[J]. Applied Physics Letters, 2015, 107(11): 9901-347.

    [7] GARCIAHEMME E, GARCIAHERNANSANZ R, OLEA J, et al. Room-temperature operation of a titanium supersaturated silicon-based infrared photodetector[J]. Applied Physics Letters, 2014, 104(21): 211105-211105-5.

    [8] LI Si-yu, WU Zhi-ming, DU Ling-yan, et al. Research on photoelectric characteristics of (S, Se) co-doped silicon fabricated by femtosecond-laser irradiation[J]. Journal of Materials Science Materials in Electronics, 2018(1): 1-6.

    [9] SHEEHY M A, TULL B R, FRIEND C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation[J]. Materials Science & Engineering B, 2007, 137(1): 289-294.

    [10] ZHANG Ting, WASEEM A, LIU Bo-han, et al. Broadband infrared response of sulfur hyperdoped silicon under femtosecond laser irradiation[J]. Materials Letters, 2017, 196: 16-19.

    [11] SULLIVAN J T, SIMMONS C B, BUONASSISI T, et al. Targeted search for effective intermediate band solar cell materials[J]. IEEE Journal of Photovoltaics, 2014, 5(1): 212-218.

    [12] SHER M J, MAZUR E. Intermediate band conduction in femtosecond-laser hyperdoped silicon[J]. Applied Physics Letters, 2014, 105(3): 1850-130.

    [13] LIMAYE M V, CHEN S C, LEE C Y, et al. Understanding of sub-band gap absorption of femtosecond-laser sulfur hyperdoped silicon using synchrotron-based techniques.[J]. Scientific Reports, 2015, 5: 11466.

    [14] LI Xiao-hong, CHANG Li-yang, QIU Rong, et al. Microstructuring and doping of silicon with nanosecond laser pulses[J]. Applied Surface Science, 2012, 258(20): 8002-8007.

    [15] HU Shao-xu, HAN Pei-de, GAO Li-peng, et al. The effects of femtosecond laser irradiation and thermal annealing on the optoelectronic properties of silicon supersaturated with sulfur[J]. Chinese Physics Letters, 2012, 29(4): 046101-379.

    [16] YU Xin-yue, ZHAO Ji-hong, LI Chun-hao,et al. Gold-hyperdoped black silicon with high IR absorption by femtosecond laser irradiation[J]. IEEE Transactions on Nanotechnology, 2017, 16(3): 502-506.

    [17] UMEZU I, NAITO M, KAWABE D,et al. Hyperdoping of silicon with deep-level impurities by pulsed YAG laser melting[J]. Applied Physics A, 2014, 117(1): 155-159.

    [18] BUCHER K, BRUNS J, WAGEMANN H G. Absorption coefficient of silicon: An assessment of measurements and the simulation of temperature variation[J]. Journal of Applied Physics, 1994, 75(2): 1127-1132.

    [19] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Physica Status Solidi, 1966, 15(2): 627–637.

    [20] CHEN J W, MILNES A G, ROHATGI A. Titanium in silicon as a deep level impurity[J]. Solid-State Electronics, 1979, 22(9): 801-808.

    [21] OKUYAMA M, MATSUNAGA N, CHEN J W, et al. Photoionization cross-sections and energy levels of gold, iron, platinum, silver, and titanium in silicon[J]. Journal of Electronic Materials, 1979, 8(4): 501-515.

    WANG Kai, LI Xiao-hong, ZHANG Yan-bing, WEN Cai, LIU De-xiong. Study of Titanium-doped Silicon Films Prepared by Magnetron Sputtering and Nanosecond Pulsed Laser[J]. Acta Photonica Sinica, 2018, 47(9): 916005
    Download Citation