• Laser & Optoelectronics Progress
  • Vol. 57, Issue 23, 232303 (2020)
Da Teng1、*, Yuncheng Wang1, Jinkang Guo1, Yandie Yang1, Wenshuai Ma1, and Kai Wang2、*
Author Affiliations
  • 1College of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044, China
  • 2Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • show less
    DOI: 10.3788/LOP57.232303 Cite this Article Set citation alerts
    Da Teng, Yuncheng Wang, Jinkang Guo, Yandie Yang, Wenshuai Ma, Kai Wang. Modal Properties of Graphene-Coated Elliptical Nanowire Pairs[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232303 Copy Citation Text show less
    References

    [1] Yang L, Duan Z Y, Ma L H et al. Surface plasmon polariton nanolasers[J]. Laser & Optoelectronics Progress, 56, 202409(2019).

    [2] Li P. Research progress of plasmonic nanofocusing[J]. Acta Physica Sinica, 68, 146201(2019).

    [3] Wei H, Pan D, Zhang S P et al. Plasmon waveguiding in nanowires[J]. Chemical Reviews, 118, 2882-2926(2018).

    [4] Xiong X, Zou C L, Ren X F et al. Silver nanowires for photonics applications[J]. Laser & Photonics Reviews, 7, 901-919(2013).

    [5] Zou C L, Sun F W, Xiao Y F et al. Plasmon modes of silver nanowire on a silica substrate[J]. Applied Physics Letters, 97, 183102(2010).

    [6] Veronis G, Fan S H. Modes of subwavelength plasmonic slot waveguides[J]. Journal of Lightwave Technology, 25, 2511-2521(2007).

    [7] Wu M, Liang X Y, Yan C L et al. Design of arch-type resonance cavity filter based on surface plasmon polaritons[J]. Laser & Optoelectronics Progress, 56, 202417(2019).

    [8] Yan Y F, Zhang G M, Qiao L T et al. Design on the convex ring MIM structure filter based on surface plasmon polaritons[J]. Acta Photonica Sinica, 48, 0223002(2019).

    [9] Han Z H, Radko I P, Mazurski N et al. On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides[J]. Nano Letters, 15, 476-480(2015).

    [10] Wang Q, Shao X Z, Zhang G M et al. Transmission characteristics of the double-layer semi-circular dielectric-loaded surface plasmon polariton waveguides[J]. Laser & Optoelectronics Progress, 53, 061302(2016).

    [11] Shao X Z, Zhang G M, Wang Q et al. Transmission characteristics of long-range dielectric-loaded surface plasmon polariton waveguide based on golden ratio[J]. Laser & Optoelectronics Progress, 53, 061301(2016).

    [13] Min Y, Min Q. Guided plasmon polariton at 2D metal corners[J]. Journal of the Optical Society of America B, 24, 2333-2342(2007).

    [14] Oulton R F, Sorger V J, Genov D A et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation[J]. Nature Photonics, 2, 496-500(2008).

    [15] Wang C, Wu G Z, Zhou P et al. Mode properties of hybrid plasmonic waveguide with an metal nano-rib[J]. Acta Photonica Sinica, 43, 0916001(2014).

    [16] Yue W C, Yao P J, Chen X L et al. Hybrid dual wedge plasmonic waveguide with long-range propagation and subwavelength mode confinement[J]. Journal of Infrared and Millimeter Waves, 37, 663-667(2018).

    [17] Jablan M, Buljan H, Soljacic M. Plasmonics in graphene at infrared frequencies[J]. Physical Review B, 80, 245435(2009).

    [18] Li Z Q, Feng D D, Li X et al. Graphene surface plasmon polaritons based photoelectric modulator with double branched structure[J]. Acta Optica Sinica, 38, 0124001(2018).

    [19] Yang X X, Kong X T, Dai Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica, 64, 106801(2015).

    [20] Zhuang H W, Kong F M, Li K et al. Plasmonic bandpass filter based on graphene nanoribbon[J]. Applied Optics, 54, 2558-2564(2015).

    [21] Wu Y X, Wu W Q, Dai X Y. SPPs in a double layer graphene system with an anisotropic dielectric[J]. Results in Physics, 15, 102718(2019).

    [22] Liu P H, Zhang X Z, Ma Z H et al. Surface plasmon modes in graphene wedge and groove waveguides[J]. Optics Express, 21, 32432-32440(2013).

    [23] Wang Q C, Song L. Propagation characteristics of dielectric-loaded graphene plasma waveguides[J]. Laser & Optoelectronics Progress, 54, 112401(2017).

    [24] Li Y, Zhang H F, Fan T X et al. Theoretical analysis of double dielectric loaded graphene surface plasmon polariton[J]. Acta Optica Sinica, 36, 0724001(2016).

    [25] Li Y, Zhang H F, Wu Q et al. Theoretical analysis of single dielectric loaded two-sheet graphene symmetric surface plasmon waveguide[J]. Laser & Optoelectronics Progress, 56, 202413(2019).

    [26] Lu H, Gan X T, Mao D et al. Graphene-supported manipulation of surface plasmon polaritons in metallic nanowaveguides[J]. Photonics Research, 5, 162-167(2017). http://www.opticsjournal.net/Articles/Abstract?aid=OJ170526000219B8EaHd

    [27] Gao Y X, Ren G B, Zhu B F et al. Analytical model for plasmon modes in graphene-coated nanowire[J]. Optics Express, 22, 24322-24331(2014).

    [28] Gao Y X, Ren G B, Zhu B F et al. Single-mode graphene-coated nanowire plasmonic waveguide[J]. Optics Letters, 39, 5909-5912(2014).

    [29] Liu J P, Zhai X, Wang L L et al. Analysis of mid-infrared surface plasmon modes in a graphene-based cylindrical hybrid waveguide[J]. Plasmonics, 11, 703-711(2016).

    [30] Zhai L, Xue W R, Yang R C et al. Propagation properties of nano dielectric parallel lines coated with graphene[J]. Acta Optica Sinica, 35, 1123002(2015).

    [31] Peng Y L, Xue W R, Wei Z Z et al. Mode properties analysis of graphene-coated asymmetric parallel dielectric nanowire waveguides[J]. Acta Physica Sinica, 67, 038102(2018).

    [32] Zhu B F, Ren G B, Yang Y et al. Field enhancement and gradient force in the graphene-coated nanowire pairs[J]. Plasmonics, 10, 839-845(2015).

    [33] Teng D, Wang K, Li Z et al. Graphene-coated nanowire dimers for deep subwavelength waveguiding in mid-infrared range[J]. Optics Express, 27, 12458-12469(2019).

    [34] Teng D, Wang K, Huan Q et al. High-performance transmission of surface plasmons in graphene-covered nanowire pairs with substrate[J]. Nanomaterials, 9, 1594(2019).

    [35] Huang Y X, Zhang L, Yin H et al. Graphene-coated nanowires with a drop-shaped cross section for 10 nm confinement and 1 mm propagation[J]. Optics Letters, 42, 2078-2081(2017).

    [36] Teng D, Wang K, Li Z et al. Graphene gap plasmonic waveguide for deep-subwavelength transmission of mid-infrared waves[J]. Acta Optica Sinica, 40, 0623002(2020).

    [37] Teng D, Wang K, Li Z et al. Graphene-coated elliptical nanowires for low loss subwavelength terahertz transmission[J]. Applied Sciences, 9, 2351(2019).

    [38] Teng D, Wang K, Li Z. Graphene-coated nanowire waveguides and their applications[J]. Nanomaterials, 10, 229(2020).

    [39] Hajati M, Hajati Y. High-performance and low-loss plasmon waveguiding in graphene-coated nanowire with substrate[J]. Journal of the Optical Society of America B, 33, 2560-2565(2016).

    [40] Wu D, Tian J P, Yang R C. Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850013(2018).

    [41] Jabbarzadeh F, Heydari M, Habibzadeh-Sharif A. A comparative analysis of the accuracy of Kubo formulations for graphene plasmonics[J]. Materials Research Express, 6, 086209(2019).

    [42] Gan C H, Chu H S, Li E P. Synthesis of highly confined surface plasmon modes with doped graphene sheets in the midinfrared and terahertz frequencies[J]. Physical Review B, 85, 125431(2012).

    [43] Efetov D K, Kim P. Controlling electron-phonon interactions in graphene at ultrahigh carrier densities[J]. Physical Review Letters, 105, 256805(2010).

    Da Teng, Yuncheng Wang, Jinkang Guo, Yandie Yang, Wenshuai Ma, Kai Wang. Modal Properties of Graphene-Coated Elliptical Nanowire Pairs[J]. Laser & Optoelectronics Progress, 2020, 57(23): 232303
    Download Citation