• Journal of Infrared and Millimeter Waves
  • Vol. 40, Issue 3, 321 (2021)
Zhi-Yong SONG1、2、4, Li-Yan SHANG1、*, Jun-Hao CHU2, Ping-Ping CHEN1、2, [in Chinese]3, and Ting-Ting KANG2、4、**
Author Affiliations
  • 1East China Normal University, Shanghai 200062, China
  • 2State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • 3University of Fukui, Fukui, 910-8507, Japan
  • 4Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
  • show less
    DOI: 10.11972/j.issn.1001-9014.2021.03.007 Cite this Article
    Zhi-Yong SONG, Li-Yan SHANG, Jun-Hao CHU, Ping-Ping CHEN, [in Chinese], Ting-Ting KANG. Flux pinning properties of InN[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 321 Copy Citation Text show less
    References

    [1] S BOUSCHER, D PANNA, A HAYAT. Semiconductor-superconductor optoelectronic devices. Journal of Optics, 19, 103003(2017).

    [2] S DE FRANCESCHI, L KOUWENHOVEN, C SCHONENBERGER et al. Hybrid superconductor-quantum dot devices. Nat Nanotechnol, 5, 703-711(2010).

    [3] H SASAKURA, S KURAMITSU, Y HAYASHI et al. Enhanced Photon Generation in a Nb/n - InGaAs/p - InP Superconductor/Semiconductor-Diode Light Emitting Device. Physical Review Letters, 107, 157403(2011).

    [4] Y KROCKENBERGER, Y TANIYASU. Transistors driven by superconductors. Nature, 555, 172-173(2018).

    [5] R MARJIEH, E SABAG, A HAYAT. Light amplification in semiconductor-superconductor structures. New Journal of Physics, 18, 023019(2016).

    [6] A HAYAT, KEE H-Y, K S BURCH et al. Cooper-pair-based photon entanglement without isolated emitters. Physical Review B, 89(2014).

    [7] G KATSAROS, P SPATHIS, M STOFFEL et al. Hybrid superconductor-semiconductor devices made from self-assembled SiGe nanocrystals on silicon. Nature Nanotechnology, 5, 458-464(2010).

    [8] I SUEMUNE, Y HAYASHI, S KURAMITSU et al. A Cooper-Pair Light-Emitting Diode: Temperature Dependence of Both Quantum Efficiency and Radiative Recombination Lifetime. Applied Physics Express, 3(2010).

    [9] M D EISAMAN, J FAN, A MIGDALL et al. Invited Review Article: Single-photon sources and detectors. Review of Scientific Instruments, 82(2011).

    [10] K D IRWIN, G C HILTON. Cryogenic Particle Detection, 63-149(2005).

    [11] C M NATARAJAN, M G TANNER, R H HADFIELD. Superconducting nanowire single-photon detectors: physics and applications. Superconductor Science & Technology, 25, 063001(2012).

    [12] E SABAG, S BOUSCHER, R MARJIEH et al. Photonic Bell-state analysis based on semiconductor-superconductor structures. Physical Review B, 95(2017).

    [13] D PANNA, S BOUSCHER, K BALASUBRAMANIAN et al. Andreev Reflection in a Superconducting Light-Emitting Diode. Nano Lett, 18, 6764-6769(2018).

    [14] S M ISLAM, K LEE, J VERMA et al. MBE-grown 232–270 nm deep-UV LEDs using monolayer thin binary GaN/AlN quantum heterostructures. Applied Physics Letters, 110(2017).

    [15] Y YUE, Z HU, J GUO et al. Ultrascaled InAlN/GaN High Electron Mobility Transistors with Cutoff Frequency of 400 GHz. Japanese Journal of Applied Physics, 52(2013).

    [16] Z HU, K NOMOTO, B SONG et al. Near unity ideality factor and Shockley-Read-Hall lifetime in GaN-on-GaN p-n diodes with avalanche breakdown. Applied Physics Letters, 107(2015).

    [17] E TIRAS, M GUNES, N BALKAN et al. Superconductivity in heavily compensated Mg-doped InN. Applied Physics Letters, 94(2009).

    [18] M CAPUTO, C CIRILLO, C ATTANASIO. NbRe as candidate material for fast single photon detection. Applied Physics Letters, 111(2017).

    [19] Y-C WEN, C-Y CHEN, C-H SHEN et al. Ultrafast carrier thermalization in InN. Applied Physics Letters, 89(2006).

    [20] F MARSILI, F NAJAFI, E DAULER et al. Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires. Nano Letters, 11, 2048-2053(2011).

    [21] A YAMAMOTO, K KODAMA, N SHIGEKAWA et al. Low-temperature(≥400 °C)growth of InN by metalorganic vapor phase epitaxy using an NH3decomposition catalyst. Japanese Journal of Applied Physics, 55, 05fd04(2016).

    [22] Z-Y SONG, L SHANG, Z HU et al. InN superconducting phase transition. Scientific reports, 9, 12309-12309(2019).

    [23] S-Z LIN, O AYALA-VALENZUELA, R D MCDONALD et al. Characterization of the thin-film NbN superconductor for single-photon detection by transport measurements. Physical Review B, 87(2013).

    [24] C ZHANG, F HAO, X LIU et al. Quasi-two-dimensional vortex–glass transition and the critical current density in TiO epitaxial thin films. Superconductor Science and Technology, 31(2018).

    [25] M Tinkham. Introduction to Superconductivity(2004).

    [26] C P Poole, H A Farach, R J Creswick et al. Superconductivity. Elsevier Science(2010).

    [27] G BLATTER, M V FEIGEL'MAN, V B GESHKENBEIN et al. Vortices in high-temperature superconductors. Reviews of Modern Physics, 66, 1125-1388(1994).

    [28] D HUSE, FISHER, M. & FISHER, D.. Are superconductors really superconducting?. Nature, 553-559(1992).

    [29] B PAL, B P JOSHI, H CHAKRABORTI et al. Experimental evidence of a very thin superconducting layer in epitaxial indium nitride. Superconductor Science & Technology, 32, 015009(2019).

    [30] C DEKKER, P J M WÖLTGENS, R H KOCH et al. Absence of a finite-temperature vortex-glass phase transition in two-dimensional YBa2Cu3O7-δ films. Physical Review Letters, 69, 2717-2720(1992).

    [31] Y CAO, V FATEMI, S FANG et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556, 43-50(2018).

    [32] J M KOSTERLITZ. Kosterlitz-Thouless physics: a review of key issues. Reports on Progress in Physics, 79, 59(2016).

    [33] G-M SU, B-Y WU, Y-T FAN et al. Berezinskii–Kosterlitz–Thouless transition in an Al superconducting nanofilm grown on GaAs by molecular beam epitaxy. Nanotechnology, 31, 205002(2020).

    [34] G N DAPTARY, S KUMAR, P KUMAR et al. Correlated non-Gaussian phase fluctuations in LaAlO3/SrTiO3 heterointerfaces. Physical Review B, 94, 085104(2016).

    [35] S PATNAIK, A GUREVICH, S D BU et al. Thermally activated current transport inMgB2films. Physical Review B, 70(2004).

    [36] E H BRANDT. The flux-line lattice in superconductors. Reports on Progress in Physics, 58, 1465-1594(1995).

    [37] H LEI, R HU, C PETROVIC. Critical fields, thermally activated transport, and critical current density of β-FeSe single crystals. Physical Review B, 84(2011).

    [38] T T M PALSTRA, B BATLOGG, L F SCHNEEMEYER et al. Thermally Activated Dissipation in Bi2.2Sr2Ca0.8Cu2O8+δ. Physical Review Letters, 61, 1662-1665(1988).

    [39] Y YESHURUN, A P MALOZEMOFF. Giant Flux Creep and Irreversibility in an Y-Ba-Cu-O Crystal: An Alternative to the Superconducting-Glass Model. Physical Review Letters, 60, 2202-2205(1988).

    [40] S R GHORBANI, X L WANG, S X DOU et al. Flux-pinning mechanism in silicone-oil-dopedMgB2: Evidence for charge-carrier mean free path fluctuation pinning. Physical Review B, 78(2008).

    [41] M J QIN, X L WANG, H K LIU et al. Evidence for vortex pinning induced by fluctuations in the transition temperature of MgB2 superconductors. Physical Review B, 65, 132508(2002).

    [42] D DEW-HUGHES. Flux pinning mechanisms in type II superconductors. Philosophical Magazine, 30, 293-305(2006).

    Zhi-Yong SONG, Li-Yan SHANG, Jun-Hao CHU, Ping-Ping CHEN, [in Chinese], Ting-Ting KANG. Flux pinning properties of InN[J]. Journal of Infrared and Millimeter Waves, 2021, 40(3): 321
    Download Citation