• Opto-Electronic Engineering
  • Vol. 47, Issue 9, 190540 (2020)
Zhu Qing1、2、*, Liu Yourong1、2, Jiang Zhipeng1、2, and Zheng Jihong1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2020.190540 Cite this Article
    Zhu Qing, Liu Yourong, Jiang Zhipeng, Zheng Jihong. Impedance spectroscopy characteristics of nano ZnO doped liquid crystal/polymer film[J]. Opto-Electronic Engineering, 2020, 47(9): 190540 Copy Citation Text show less
    References

    [1] Torres J C, Vergaz R, Barrios D, et al. Frequency and temper-ature dependence of fabrication parameters in polymer dis-persed liquid crystal devices[J]. Materials, 2014, 7(5): 3512–3521.

         Torres J C, Vergaz R, Barrios D, et al. Frequency and temper-ature dependence of fabrication parameters in polymer dis-persed liquid crystal devices[J]. Materials, 2014, 7(5): 3512–3521.

    [2] Jiang J H, McGraw G, Ma R Q, et al. Selective scattering po-lymer dispersed liquid crystal film for light enhancement of or-ganic light emitting diode[J]. Optics Express, 2017, 25(4): 3327–3335.

         Jiang J H, McGraw G, Ma R Q, et al. Selective scattering po-lymer dispersed liquid crystal film for light enhancement of or-ganic light emitting diode[J]. Optics Express, 2017, 25(4): 3327–3335.

    [3] Kafy A, Sadasivuni K K, Kim H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5923–5931.

         Kafy A, Sadasivuni K K, Kim H C, et al. Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites[J]. Physical Chemistry Chemical Physics, 2015, 17(8): 5923–5931.

    [4] Mohanapriya M K, Deshmukh K, Chidambaram K, et al. Poly-vinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device appli-cations[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 6099–6111.

         Mohanapriya M K, Deshmukh K, Chidambaram K, et al. Poly-vinyl alcohol (PVA)/polystyrene sulfonic acid (PSSA)/carbon black nanocomposite for flexible energy storage device appli-cations[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(8): 6099–6111.

    [5] Ponnamma D, Varughese K T, Al-Maadeed M A A, et al. Curing enhancement and network effects in multi-walled carbon na-notube-filled vulcanized natural rubber: evidence for solvent sensing[J]. Polymer International, 2017, 66(6): 931–938.

         Ponnamma D, Varughese K T, Al-Maadeed M A A, et al. Curing enhancement and network effects in multi-walled carbon na-notube-filled vulcanized natural rubber: evidence for solvent sensing[J]. Polymer International, 2017, 66(6): 931–938.

    [6] Deshmukh K, Ahamed M B, Sadasivuni K K, et al. Solu-tion-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and di-electric properties for electronic encapsulation[J]. Journal of Polymer Research, 2017, 24(2): 27.

         Deshmukh K, Ahamed M B, Sadasivuni K K, et al. Solu-tion-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and di-electric properties for electronic encapsulation[J]. Journal of Polymer Research, 2017, 24(2): 27.

    [7] Popov N, Honaker L W, Popova M, et al. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors[J]. Materials, 2018, 11(1): 20.

         Popov N, Honaker L W, Popova M, et al. Thermotropic Liquid Crystal-Assisted Chemical and Biological Sensors[J]. Materials, 2018, 11(1): 20.

    [8] Stodolak E, Paluszkiewicz C, Bogun M, et al. Nanocomposite fibres for medical applications[J]. Journal of Molecular Structure, 2009, 924–926: 208–213.

         Stodolak E, Paluszkiewicz C, Bogun M, et al. Nanocomposite fibres for medical applications[J]. Journal of Molecular Structure, 2009, 924–926: 208–213.

    [9] Song S, Jeong J, Chung S H, et al. Electroluminescent devices with function of electro-optic shutter[J]. Optics Express, 2012, 20(19): 21074–21082.

         Song S, Jeong J, Chung S H, et al. Electroluminescent devices with function of electro-optic shutter[J]. Optics Express, 2012, 20(19): 21074–21082.

    [10] Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Advances in OptoE-lectronics, 2008, 2008: 684349.

         Liu Y J, Sun X W. Holographic polymer-dispersed liquid crystals: materials, formation, and applications[J]. Advances in OptoE-lectronics, 2008, 2008: 684349.

    [16] Lai Y T, Kuo J C, Yang Y J. Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application[J]. Applied Physics Letters, 2013, 102(19): 191912.

         Lai Y T, Kuo J C, Yang Y J. Polymer-dispersed liquid crystal doped with carbon nanotubes for dimethyl methylphosphonate vapor-sensing application[J]. Applied Physics Letters, 2013, 102(19): 191912.

    [17] Lai Y T, Kuo J C, Yang Y J. A novel gas sensor using poly-mer-dispersed liquid crystal doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 2014, 215: 83–88.

         Lai Y T, Kuo J C, Yang Y J. A novel gas sensor using poly-mer-dispersed liquid crystal doped with carbon nanotubes[J]. Sensors and Actuators A: Physical, 2014, 215: 83–88.

    [18] .ztrk S, Kemen A, Kemen Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room tempera-ture VOC sensors[J]. Sensors and Actuators B: Chemical, 2016, 222: 280–289.

         .ztrk S, Kemen A, Kemen Z A, et al. Electrochemically growth of Pd doped ZnO nanorods on QCM for room tempera-ture VOC sensors[J]. Sensors and Actuators B: Chemical, 2016, 222: 280–289.

    [19] Arfin T, Rangari S N. Graphene oxide–ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods, 2018, 10(3): 347–358.

         Arfin T, Rangari S N. Graphene oxide–ZnO nanocomposite modified electrode for the detection of phenol[J]. Analytical Methods, 2018, 10(3): 347–358.

    [20] Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258–266.

         Kaur M, Kailasaganapathi S, Ramgir N, et al. Gas dependent sensing mechanism in ZnO nanobelt sensor[J]. Applied Surface Science, 2017, 394: 258–266.

    [22] Srivastava S, Srivastava A K, Singh P, et al. Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric in-vestigation[J]. Journal of Alloys and Compounds, 2015, 644: 597–601.

         Srivastava S, Srivastava A K, Singh P, et al. Synthesis of zinc oxide (ZnO) nanorods and its phenol sensing by dielectric in-vestigation[J]. Journal of Alloys and Compounds, 2015, 644: 597–601.

    [23] Ponnamma D, Cabibihan J J, Rajan M, et al. Synthesis, opti-mization and applications of ZnO/polymer nanocomposites[J]. Materials Science and Engineering: C, 2019, 98: 1210–1240.

         Ponnamma D, Cabibihan J J, Rajan M, et al. Synthesis, opti-mization and applications of ZnO/polymer nanocomposites[J]. Materials Science and Engineering: C, 2019, 98: 1210–1240.

    [24] Galoppini E, Rochford J N, Chen H H, et al. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16159–16161.

         Galoppini E, Rochford J N, Chen H H, et al. Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16159–16161.

    [25] Matei A, Cernica I, Cadar O, et al. Synthesis and characteriza-tion of ZnO–polymer nanocomposites[J]. International Journal of Material Forming, 2008, 1(1): 767–770.

         Matei A, Cernica I, Cadar O, et al. Synthesis and characteriza-tion of ZnO–polymer nanocomposites[J]. International Journal of Material Forming, 2008, 1(1): 767–770.

    [27] Abdollahi H, Samkan M, Hashemi M M. Facile and fast elec-trospinning of crystalline ZnO 3D interconnected nanoporous nanofibers for ammonia sensing application[J]. Microsystem Technologies, 2018, 24(9): 3741–3749.

         Abdollahi H, Samkan M, Hashemi M M. Facile and fast elec-trospinning of crystalline ZnO 3D interconnected nanoporous nanofibers for ammonia sensing application[J]. Microsystem Technologies, 2018, 24(9): 3741–3749.

    [28] XuW H, Han E H,Wang Z Y, et al. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64–75.

         XuW H, Han E H,Wang Z Y, et al. Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution[J]. Journal of Materials Science & Technology, 2019, 35(1): 64–75.

    [29] Maximean D M, Danila O, Almeida P L, et al. Electrical proper-ties of a liquid crystal dispersed in an electrospun cellulose acetate network[J]. Beilstein Journal of Nanotechnology, 2018, 9: 155–163.

         Maximean D M, Danila O, Almeida P L, et al. Electrical proper-ties of a liquid crystal dispersed in an electrospun cellulose acetate network[J]. Beilstein Journal of Nanotechnology, 2018, 9: 155–163.

    [30] Belyaev B A, Drokin N A, Maslennikov A N. Impedance spec-troscopy investigation of liquid crystals doped with ionic sur-factants[J]. Physics of the Solid State, 2014, 56(7): 1455–1462.

         Belyaev B A, Drokin N A, Maslennikov A N. Impedance spec-troscopy investigation of liquid crystals doped with ionic sur-factants[J]. Physics of the Solid State, 2014, 56(7): 1455–1462.

    [31] Szyp.owska A, Nakonieczna A, Wilczek A, et al. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids[J]. Sensor, 2013, 13(10): 13301–13317.

         Szyp.owska A, Nakonieczna A, Wilczek A, et al. Application of a coaxial-like sensor for impedance spectroscopy measurements of selected low-conductivity liquids[J]. Sensor, 2013, 13(10): 13301–13317.

    [32] Shi Z Q, Shao L S, Zhang Y L, et al. Fabrication of poly-mer-dispersed liquid crystals with low driving voltage based on the thiol-ene click reaction[J]. Polymer International, 2017, 66(7): 1094–1098.

         Shi Z Q, Shao L S, Zhang Y L, et al. Fabrication of poly-mer-dispersed liquid crystals with low driving voltage based on the thiol-ene click reaction[J]. Polymer International, 2017, 66(7): 1094–1098.

    [33] Deshmukh R R, Katariya-Jain A. Novel techniques of PDLC film preparation furnishing manifold properties in a single device[J]. Liquid Crystals, 2016, 43(2): 256–267.

         Deshmukh R R, Katariya-Jain A. Novel techniques of PDLC film preparation furnishing manifold properties in a single device[J]. Liquid Crystals, 2016, 43(2): 256–267.

    [34] Studenyak I P, Kop.anskP, Timko M, et al. Effects of non-additive conductivity variation for a nematic liquid crystal caused by magnetite and carbon nanotubes at various scales[J]. Liquid Crystals, 2017, 44(11): 1709–1716.

         Studenyak I P, Kop.anskP, Timko M, et al. Effects of non-additive conductivity variation for a nematic liquid crystal caused by magnetite and carbon nanotubes at various scales[J]. Liquid Crystals, 2017, 44(11): 1709–1716.

    [35] Stark H. Physics of colloidal dispersions in nematic liquid crys-tals[J]. Physics Reports, 2001, 351(6): 387–474.

         Stark H. Physics of colloidal dispersions in nematic liquid crys-tals[J]. Physics Reports, 2001, 351(6): 387–474.

    [36] Mirzaei A, Park S, Kheel H, et al. ZnO-capped nanorod gas sensors[J]. Ceramics International, 2016, 42(5): 6187–6197.

         Mirzaei A, Park S, Kheel H, et al. ZnO-capped nanorod gas sensors[J]. Ceramics International, 2016, 42(5): 6187–6197.

    Zhu Qing, Liu Yourong, Jiang Zhipeng, Zheng Jihong. Impedance spectroscopy characteristics of nano ZnO doped liquid crystal/polymer film[J]. Opto-Electronic Engineering, 2020, 47(9): 190540
    Download Citation