• Journal of Inorganic Materials
  • Vol. 35, Issue 1, 105 (2020)
Si-Lin GUO1、2, Shuai KANG1、2、*, and Wen-Qiang LU1、2
Author Affiliations
  • 1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • 2University of Chinese Academy of Sciences, Chongqing 400714, China
  • show less
    DOI: 10.15541/jim20190161 Cite this Article
    Si-Lin GUO, Shuai KANG, Wen-Qiang LU. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105 Copy Citation Text show less
    References

    [1] T LIU, L LIN, X BI et al. In sit quantification of interphasial chemistry in Li-ion battery. Nat. Nanotechnol., 14, 50-56(2019).

    [2] P JEŻOWSKI, O CROSNIER, E DEUNF et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater., 17, 167-173(2017).

    [3] X TONG, F ZHANG, G CHEN et al. Core-shell aluminum@carbon nanospheres for dual-ion batteries with excellent cycling performance under high rates. Adv. Energy Mater., 8, 1701967(2018).

    [4] K NAYAK P, M ERICKSON E, F SCHIPPER et al. Review on challenges and recent advances in the electrochemical performance of high capacity Li- and Mn-rich cathode materials for Li-ion batteries. Adv. Energy Mater., 8, 1702397(2018).

    [5] M WINTER, B BARNETT, K XU. Before Li ion batteries. Chem. Rev., 118, 11433-11456(2018).

    [6] J DING, W HU, E PAEK et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev., 118, 6457-6498(2018).

    [7] J DENG, C BAE, J MARCICKI et al. Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nat. Energy, 3, 261(2018).

    [8] Z YANG, L GU, Y HU et al. Atomic-scale structure-property relationships in lithium ion battery electrode materials. Ann. Rev. Mater. Res., 47, 175-198(2017).

    [9] Y SUN, N LIU, Y CUI. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy, 1, 16071(2016).

    [10] O SCHMIDT, A HAWKES, A GAMBHIR et al. The future cost of electrical energy storage based on experience rates. Nat. Energy, 2, 17118(2017).

    [11] P ALBERTUS, S BABINEC, S LITZELMAN et al. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy, 3, 16-21(2018).

    [12] W CHOI J, D AURBACH. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater., 1, 16013(2016).

    [13] K CHAN C, H PENG, G LIU et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol., 3, 31-35(2008).

    [14] R MO, D ROONEY, K SUN et al. 3D Nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery. Nat. Commun., 8, 13949(2017).

    [15] Z LIU, Q YU, Y ZHAO et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev., 48, 285-309(2019).

    [16] M TARASCON J, M ARMAND. Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367(2001).

    [17] J MA, J SUNG, J HONG et al. Towards maximized volumetric capacity via pore-coordinated design for large-volume-change lithium-ion battery anodes. Nat. Commun., 10, 475(2019).

    [18] I KOVALENKO, B ZDYRKO, A MAGASINSKI et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science, 334, 75-79(2011).

    [19] Z WU, W REN, L WEN et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano, 4, 3187-3194(2010).

    [20] Y GOGOTSI. Transition metal carbides go 2D. Nat. Mater., 14, 1079-1080(2015).

    [21] M NAGUIB, J HALIM, J LU et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J. Am. Chem. Soc., 135, 15966-15969(2013).

    [22] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23, 4248-4253(2011).

    [23] Z FU, Q ZHANG, D LEGUT et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Phys. Rev. B, 94, 104103(2016).

    [24] H WENG, A RANJBAR, Y LIANG et al. Large-gap two-dimensional topological insulator in oxygen functionalized MXene. Phys. Rev. B, 92, 075436(2015).

    [25] S ZHAO, W KANG, J XUE. Manipulation of electronic and magnetic properties of M2C (M=Hf, Nb, Sc, Ta, Ti, V, Zr) monolayer by applying mechanical strains. Appl. Phys. Lett., 104, 133106(2014).

    [26] Z MA, Z HU, X ZHAO et al. Tunable band structures of heterostructured bilayers with transition-metal dichalcogenide and MXene monolayer. J. Phys. Chem. C, 118, 5593-5599(2014).

    [27] X LIANG, A GARSUCH, F NAZAR. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 54, 3907-3911(2015).

    [28] X ZHAO, M LIU, Y CHEN et al. Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium-sulfur batteries. J. Mater. Chem. A, 3, 7870-7876(2015).

    [29] J LUO, X TAO, J ZHANG et al. Sn4+ ion decorated highly conductive Ti3C2 MXene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano, 10, 2491-2499(2016).

    [30] P LIAN, Y DONG, Z WU et al. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy, 40, 1-8(2017).

    [31] Y DONG, S ZHENG, J QIN et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 12, 2381-2388(2018).

    [32] G MEDVEDEV A, A MIKHAYLOV, A GRISHANOV et al. GeO2 thin film deposition on graphene oxide by the hydrogen peroxide route: evaluation for lithium-ion battery anode. ACS Appl. Mater. Interfaces, 9, 9152-9160(2017).

    [33] D LI, H WANG, H LIU et al. A new strategy for achieving a high performance anode for lithium ion batteries-encapsulating germanium nanoparticles in carbon nanoboxes. Adv. Energy Mater., 6, 1501666(2016).

    [34] C GAO, N KIM, R VILLEGAS et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon, 123, 433-439(2017).

    [35] W ZHANG, H PANG, W SUN et al. Metal-organic frameworks derived germanium oxide nanosheets for large reversible Li-ion storage. Electrochem. Commun., 84, 80-85(2017).

    [36] S FULLER C, C SEVERIENS J. Mobility of impurity ions in germanium and silicon. Phys. Rev., 96, 21-24(1954).

    [37] J GRAETZ, C AHN C, R YAZAMI et al. Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc., 151, A698-A702(2004).

    [38] H LIU X, S HUANG, T PICRAUX S et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study. Nano Lett., 11, 3991-3997(2011).

    [39] D WANG, Y CHANG, Q WANG et al. Surface chemistry and electrical properties of germanium nanowires. J. Am. Chem. Soc., 126, 11602-11611(2004).

    Si-Lin GUO, Shuai KANG, Wen-Qiang LU. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries[J]. Journal of Inorganic Materials, 2020, 35(1): 105
    Download Citation