• Laser & Optoelectronics Progress
  • Vol. 56, Issue 12, 120001 (2019)
Fanghua Liu1、2, Xin Gong1、2, Yanan Zhang1、2, Junqing Meng1、2、*, and Weibiao Chen1、2
Author Affiliations
  • 1 Key Laboratory of Space Laser Communication and Detection Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/LOP56.120001 Cite this Article Set citation alerts
    Fanghua Liu, Xin Gong, Yanan Zhang, Junqing Meng, Weibiao Chen. Research Progress on 808 nm VCSEL-Array-Pumped Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120001 Copy Citation Text show less
    Structure and performance of circular VCSEL pump module. (a) Structure and dimension of pump module; (b) pump module mounted on Cu heat-sink; (c) light emission distribution of pump module; (d) output performance of pump module
    Fig. 1. Structure and performance of circular VCSEL pump module. (a) Structure and dimension of pump module; (b) pump module mounted on Cu heat-sink; (c) light emission distribution of pump module; (d) output performance of pump module
    Package drawing of water-cooled VCSEL-pumped passively Q-switched laser
    Fig. 2. Package drawing of water-cooled VCSEL-pumped passively Q-switched laser
    Schematic of 2D VCSEL array coupled into fiber via microlens array
    Fig. 3. Schematic of 2D VCSEL array coupled into fiber via microlens array
    Picture of pump module. (a) VCSEL array mounted on 20 mm×20 mm micro-cooler assembly; (b) uniform distribution of pump light from pump module
    Fig. 4. Picture of pump module. (a) VCSEL array mounted on 20 mm×20 mm micro-cooler assembly; (b) uniform distribution of pump light from pump module
    Output performances of VCSEL array at different heat sink temperatures. (a) Output power as function of injection current; (b) central wavelength as function of injection current
    Fig. 5. Output performances of VCSEL array at different heat sink temperatures. (a) Output power as function of injection current; (b) central wavelength as function of injection current
    Research unit /yearParameterOutput
    U.S. Army RDECOMCERDEC[32](2011)Nd∶YAG, end-pumped, passively Q-switched18 mJ, 4.6 ns, 5 Hz @1064 nm
    U.S. Army RDECOMCERDEC[34](2012)Nd∶YAG, end-pumped, passively Q-switched22 mJ, 1.4ns, 5 Hz @1064 nm
    Nd∶YAG end-pumped, acousto-optic Q-switched35 mJ, 7 ns, 5 Hz @1064 nm,7.5 mJ, 5 Hz @355 nm
    Princeton Optronics[33](2012)Nd∶YAG, end-pumped, passively Q-switched18 mJ, 4 Hz@1064 nm 10 mJ, 4 Hz @532 nm
    Princeton Optronics[38](2012)Nd∶YAG, end-pumped, passively Q-switched63 mJ @1064 nm
    Princeton Optronics[20](2012)Nd∶YAG, end-pumped5.8 W, 100 Hz @1064 nm
    Changchun University ofScience and Technology[31] (2013)Nd∶GdVO4, end-pumped0.754W, 606 Hz @1064 nm
    University of Pittsburgh[36](2016)Nd∶YAG end-pumped, actively Q-switched12.9 mJ, 16 ns, 10 Hz @1064 nm
    Princeton Optronics[37](2017)Nd∶YAG, end-pumped, passively Q-switched47 mJ, 15 Hz @1064 nm
    Table 1. Research progress on VCSEL- array end-pumped solid-state lasers
    Research unit /yearParameterOutput
    Princeton Optronics[18](2011)Nd∶YAG, side-pumped,passively Q-switched4.7 mJ, 4 ns @1064 nm, 2.5 mJ@532 nm, 0.8 mJ, 2.7ns @266 nm
    Nd∶YAG, dual-side-pumped, acousto-optic Q-switched12 mJ, 23 ns @946 nm,5.6 mJ, 17 ns @473 nm
    Princeton Optronics[33](2012)Nd∶YAG, dual-side-pumped,acousto-optic Q-switch21 mJ, 4 Hz @946 nm,10 mJ, 4 Hz, 17 ns @473 nm
    Princeton Optronics[20](2012)Nd∶YAG, dual-side-pumped,passively Q-switch7 mJ, 40 Hz @1064 nm,6.5 mJ, 10.9 ns, 240 Hz @1064 nm,0.8mJ, 240 Hz @266 nm
    Princeton Optronics[39](2013)Nd∶YAG, dual side-pumped,passively Q-switched8.34 W @1064 nm, 0.68 mJ,10 ns, 1.3 KHz @266 nm
    Princeton Optronics[19](2013)Nd∶YAG, dual-side-pumped,acousto-optic Q-switched20.4 mJ, 300 Hz @946 nm
    Princeton Optronics[40](2015)Nd∶YAG, Three-VCSEL-arrayside-pumped, acousto-optic Q-switched4.9 mJ, 210 Hz @473 nm,3.2 mJ, 340 Hz @473 nm
    Table 2. Research progress on VCSEL-array side-pumped solid-state lasers
    Research unit /yearParameterOutputTemperature /℃
    U.S. Army RDECOMCERDEC[44](2013)Nd∶YAG, end-pumped,passively Q-switched14-17 mJ, 2-4 ns, 10 Hz@1064 nm, 1.4 mJ,10 Hz @355 nm10-60
    Institute for MolecularScience, Japan[50](2013)Nd∶YAG, end-pumped,passively Q-switched1 mJ @1064 nm10-80
    Shanghai Institute of Opticsand Fine Mechanics, ChineseAcademy of Sciences[47] (2013)Nd∶YAG, end-pumped,passively Q-switched81 μJ, 13 ns,100 Hz @1064 nm15-35
    Princeton Optronics[43](2016)Nd∶YAG, end-pumped,passively Q-switched18 mJ, 15 Hz@1064 nm25-60
    Shanghai Institute of Opticsand Fine Mechanics, ChineseAcademy of Sciences[48] (2018)Nd∶YAG, side-pumped,passively Q-switched2.1 mJ, 40 Hz @1064 nm9-17
    Shanghai Institute of Optics andFine Mechanics, Chinese Academyof Sciences[49] (2019)Nd∶YAG, side-pumped,passively Q-switched21.5 mJ, 1 Hz,4.3 ns @1064nm-75-40
    Table 3. Research progress on VCSEL-array-pumped solid-state lasers operating in wide temperature range
    Fanghua Liu, Xin Gong, Yanan Zhang, Junqing Meng, Weibiao Chen. Research Progress on 808 nm VCSEL-Array-Pumped Solid-State Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(12): 120001
    Download Citation