• Acta Photonica Sinica
  • Vol. 50, Issue 9, 0906006 (2021)
Zhenwei CHEN1, Huanquan CHEN1, Wenhui SHI1, Jianyu LI1, Jiajin ZHENG1、2、*, and Wei WEI1、2
Author Affiliations
  • 1College of Electronic and Optical Engineering, College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing20023, China
  • 2Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing1003, China
  • show less
    DOI: 10.3788/gzxb20215009.0906006 Cite this Article
    Zhenwei CHEN, Huanquan CHEN, Wenhui SHI, Jianyu LI, Jiajin ZHENG, Wei WEI. Design, Fabrication and Performance Research of a High Precision FBG Micro-displacement Sensor with Temperature Compensation[J]. Acta Photonica Sinica, 2021, 50(9): 0906006 Copy Citation Text show less
    Schematic diagram of FBG displacement and temperature compensation sensor designed in this paper (FBG1: displacement; FBG2: temperature)
    Fig. 1. Schematic diagram of FBG displacement and temperature compensation sensor designed in this paper (FBG1: displacement; FBG2: temperature)
    Test diagram of FBG displacement and temperature compensation sensor system
    Fig. 2. Test diagram of FBG displacement and temperature compensation sensor system
    Physical image of FBG displacement sensor
    Fig. 3. Physical image of FBG displacement sensor
    Displacement cycle test diagram of fiber grating sensor
    Fig. 4. Displacement cycle test diagram of fiber grating sensor
    Test diagram of temperature compensation of FBG displacement sensor with different substrates
    Fig. 5. Test diagram of temperature compensation of FBG displacement sensor with different substrates
    Fitting curve of temperature and wavelength drift of FBG displacement sensor
    Fig. 6. Fitting curve of temperature and wavelength drift of FBG displacement sensor
    Temperature compensation error diagram of FBG displacement sensor
    Fig. 7. Temperature compensation error diagram of FBG displacement sensor
    Displacement x/mm

    Positive stroke deviation

    Δx/(×10-3 nm)

    Reverse stroke deviationΔx/(×10-3 nm)
    01.1551.528
    11.7321.000
    21.0001.732
    31.0002.082
    41.7321.732
    52.3091.155
    61.0001.732
    70.5771.155
    82.6461.155
    91.5281.528
    101.5281.528
    Table 1. Table for calculation and analysis of standard deviation of each shift point
    SubstrateHeating period T/℃Maximum wavelength difference Δλ/pm

    wavelength difference

    stabilization time t/min

    Quartz tube25~35404.3
    35~45383.9
    45~55264.1
    Aluminum alloy tube25~35445.8
    35~45386.6
    45~55276.8
    Without substrate25~35475.3
    35~45424.5
    45~55394.8
    Table 2. Temperature compensation performance of displacement sensors with quartz and aluminum alloy as substrates
    Temperature T/℃The theory of displacement x1/mm

    The actual displacement

    x2/mm

    Absolute deviation of hysteresis Δx/mm
    2555.0080.008
    3555.0130.013
    4554.9940.006
    5555.0070.007
    Table 3. Quartz substrate fiber grating displacement sensor temperature error analysis table
    Zhenwei CHEN, Huanquan CHEN, Wenhui SHI, Jianyu LI, Jiajin ZHENG, Wei WEI. Design, Fabrication and Performance Research of a High Precision FBG Micro-displacement Sensor with Temperature Compensation[J]. Acta Photonica Sinica, 2021, 50(9): 0906006
    Download Citation