• Photonics Research
  • Vol. 9, Issue 2, 106 (2021)
Yan Liu1、†, Qing-Yun Yu1、†, Ze-Ming Chen1、†, Hao-Yang Qiu1, Rui Chen1, Shao-Ji Jiang1, Xin-Tao He1、2, Fu-Li Zhao1、3, and Jian-Wen Dong1、*
Author Affiliations
  • 1School of Physics & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
  • 2e-mail: hext9@mail.sysu.edu.cn
  • 3e-mail: stszfl@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.406197 Cite this Article Set citation alerts
    Yan Liu, Qing-Yun Yu, Ze-Ming Chen, Hao-Yang Qiu, Rui Chen, Shao-Ji Jiang, Xin-Tao He, Fu-Li Zhao, Jian-Wen Dong. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 106 Copy Citation Text show less
    References

    [1] R. A. Natalin, J. Landman. Where next for the endoscope?. Nat. Rev. Urol., 6, 622-628(2009).

    [2] D. Ramai, K. Zakhia, D. Etienne, M. Reddy. Philipp Bozzini (1773–1809): the earliest description of endoscopy. J. Med. Biography, 26, 137-141(2018).

    [3] M. Hughes, T. P. Chang, G.-Z. Yang. Fiber bundle endocytoscopy. Biomed. Opt. Express, 4, 2781-2794(2013).

    [4] M. Kim, J. Hong, J. Kim, H.-J. Shin. Fiber bundle-based integrated platform for wide-field fluorescence imaging and patterned optical stimulation for modulation of vasoconstriction in the deep brain of a living animal. Biomed. Opt. Express, 8, 2781-2795(2017).

    [5] P. Kim, E. Chung, H. Yamashita, K. E. Hung, A. Mizoguchi, R. Kucherlapati, D. Fukumura, R. K. Jain, S. H. Yun. In vivo wide-area cellular imaging by side-view endomicroscopy. Nat. Methods, 7, 303-305(2010).

    [6] Y.-H. Seo, K. Hwang, K.-H. Jeong. 1.65 mm diameter forward-viewing confocal endomicroscopic catheter using a flip-chip bonded electrothermal MEMS fiber scanner. Opt. Express, 26, 4780-4785(2018).

    [7] M. E. Bocarsly, W.-C. Jiang, C. Wang, J. T. Dudman, N. Ji, Y. Aponte. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express, 6, 4546-4556(2015).

    [8] D. Reismann, J. Stefanowski, R. Günther, A. Rakhymzhan, R. Matthys, R. Nützi, S. Zehentmeier, K. Schmidt-Bleek, G. Petkau, H.-D. Chang, S. Naundorf, Y. Winter, F. Melchers, G. Duda, A. E. Hauser, R. A. Niesner. Longitudinal intravital imaging of the femoral bone marrow reveals plasticity within marrow vasculature. Nat. Commun., 8, 2153(2017).

    [9] T. A. Murray, M. J. Levene. Singlet gradient index lens for deep in vivo multiphoton microscopy. J. Biomed. Opt., 17, 021106(2012).

    [10] J. H. Jennings, C. K. Kim, J. H. Marshel, M. Raffiee, L. Ye, S. Quirin, S. Pak, C. Ramakrishnan, K. Deisseroth. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature, 565, 645-649(2019).

    [11] M. A. A. Neil, R. Juškaitis, T. Wilson. Method of obtaining optical sectioning by using structured light in a conventional microscope. Opt. Lett., 22, 1905-1907(1997).

    [12] T. S. Tkaczyk, M. Rahman, V. Mack, K. Sokolov, J. D. Rogers, R. Richards-Kortum, M. R. Descour. High resolution, molecular-specific, reflectance imaging in optically dense tissue phantoms with structured-illumination. Opt. Express, 12, 3745-3758(2004).

    [13] H. Neumann, M. Vieth, M. F. Neurath, F. S. Fuchs. In vivo diagnosis of small-cell lung cancer by endocytoscopy. J. Clin. Oncol., 29, e131-e132(2011).

    [14] T. Arao, K. Yanagihara, M. Takigahira, M. Takeda, F. Koizumi, Y. Shiratori, K. Nishio. ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model. Int. J. Cancer, 118, 483-489(2006).

    [15] S. Saha, A. Bardelli, P. Buckhaults, V. E. Velculescu, C. Rago, B. S. Croix, K. E. Romans, M. A. Choti, C. Lengauer, K. W. Kinzler, B. Vogelstein. A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343-1346(2001).

    [16] C. Liang, K.-B. Sung, R. R. Richards-Kortum, M. R. Descour. Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt., 41, 4603-4610(2002).

    [17] L. Yang, J. Wang, G. Tian, J. Yuan, Q. Liu, L. Fu. Five-lens, easy-to-implement miniature objective for a fluorescence confocal microendoscope. Opt. Express, 24, 473-484(2016).

    [18] J. Wang, H. Li, G. Tian, Y. Deng, Q. Liu, L. Fu. Near-infrared probe-based confocal microendoscope for deep-tissue imaging. Biomed. Opt. Express, 9, 5011-5025(2018).

    [19] J. Knittel, L. Schnieder, G. Buess, B. Messerschmidt, T. Possner. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun., 188, 267-273(2001).

    [20] W. Göbel, J. N. D. Kerr, A. Nimmerjahn, F. Helmchen. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett., 29, 2521-2523(2004).

    [21] Y. Chang, W. Lin, J. Cheng, S. C. Chen. Compact high-resolution endomicroscopy based on fiber bundles and image stitching. Opt. Lett., 43, 4168-4171(2018).

    [22] B. A. Flusberg, A. Nimmerjahn, E. D. Cocker, E. A. Mukamel, R. P. J. Barretto, T. H. Ko, L. D. Burns, J. C. Jung, M. J. Schnitzer. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods, 5, 935-938(2008).

    [23] M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, W. W. Webb. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol., 91, 1908-1912(2004).

    [24] X. Li, C. Chudoba, T. Ko, C. Pitris, J. G. Fujimoto. Imaging needle for optical coherence tomography. Opt. Lett., 25, 1520-1522(2000).

    [25] S. M. Kamali, E. Arbabi, A. Arbabi, A. Faraon. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 7, 1041-1068(2018).

    [26] M. L. Tseng, H.-H. Hsiao, C. H. Chu, M. K. Chen, G. Sun, A.-Q. Liu, D. P. Tsai. Metalenses: advances and applications. Adv. Opt. Mater., 6, 1800554(2018).

    [27] B. Li, W. Piyawattanametha, Z. Qiu. Metalens-based miniaturized optical systems. Micromachines, 10, 310(2019).

    [28] S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photon., 11, 380-479(2019).

    [29] X. Zou, G. Zheng, Q. Yuan, W. Zang, R. Chen, T. Li, L. Li, S. Wang, Z. Wang, S. Zhu. Imaging based on metalenses. PhotoniX, 1, 2(2020).

    [30] A. Arbabi, Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [31] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [32] X. Ni, S. Ishii, A. V. Kildishev, V. M. Shalaev. Ultra-thin, planar, Babinet-inverted plasmonic metalenses. Light Sci. Appl., 2, e72(2013).

    [33] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, F. Capasso. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [34] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, A. Faraon. Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces. Optica, 4, 625-632(2017).

    [35] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [36] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, F. Capasso. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [37] Z.-B. Fan, H.-Y. Qiu, H.-L. Zhang, X.-N. Pang, L.-D. Zhou, L. Liu, H. Ren, Q.-H. Wang, J.-W. Dong. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [38] H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L. P. Hariri, D. C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso, M. J. Suter. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics, 12, 540-547(2018).

    [39] C. Chen, W. Song, J.-W. Chen, J.-H. Wang, Y. H. Chen, B. Xu, M.-K. Chen, H. Li, B. Fang, J. Chen, H. Y. Kuo, S. Wang, D. P. Tsai, S. Zhu, T. Li. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [40] M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. M. Agarwal, H. Zhang, J. Hu, T. Gu. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429-7437(2020).

    [41] A. Arbabi, E. Arbabi, S. M. Kamali, Y. Horie, S. Han, A. Faraon. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [42] B. Groever, W. T. Chen, F. Capasso. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017).

    [43] A. Arbabi, E. Arbabi, Y. Horie, S. M. Kamali, A. Faraon. Planar metasurface retroreflector. Nat. Photonics, 11, 415-420(2017).

    [44] E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, M. Faraji-Dana, A. Faraon. MEMS-tunable dielectric metasurface lens. Nat. Commun., 9, 812(2018).

    [45] M. Faraji-Dana, E. Arbabi, A. Arbabi, S. M. Kamali, H. Kwon, A. Faraon. Compact folded metasurface spectrometer. Nat. Commun., 9, 4196(2018).

    [46] M. Faraji-Dana, E. Arbabi, H. Kwon, S. M. Kamali, A. Arbabi, J. G. Bartholomew, A. Faraon. Hyperspectral imager with folded metasurface optics. ACS Photon., 6, 2161-2167(2019).

    [47] H. Kwon, E. Arbabi, S. M. Kamali, M. Faraji-Dana, A. Faraon. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat. Photonics, 14, 109-114(2020).

    [48] R. Liang. Endoscope Optics. Optical Design for Biomedical Imaging, 399-410(2011).

    [49] Z.-B. Fan, Z.-K. Shao, M.-Y. Xie, X.-N. Pang, W.-S. Ruan, F.-L. Zhao, Y.-J. Chen, S.-Y. Yu, J.-W. Dong. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl., 10, 014005(2018).

    [50] V. Liu, S. Fan. S4: a free electromagnetic solver for layered periodic structures. Comput. Phys. Commun., 183, 2233-2244(2012).

    [51] S. Banerji, M. Meem, A. Majumder, F. G. Vasquez, B. Sensale-Rodriguez, R. Menon. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 6, 805-810(2019).

    [52] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 11, 1991(2020).

    [53] P. P. Iyer, R. A. DeCrescent, T. Lewi, N. Antonellis, J. A. Schuller. Uniform thermo-optic tunability of dielectric metalenses. Phys. Rev. Appl., 10, 044029(2018).

    CLP Journals

    [1] Dewen Cheng, Jiaxi Duan, Hailong Chen, He Wang, Danyang Li, Qiwei Wang, Qichao Hou, Tong Yang, Weihong Hou, Donghua Wang, Xiaoyu Chi, Bin Jiang, Yongtian Wang. Freeform OST-HMD system with large exit pupil diameter and vision correction capability[J]. Photonics Research, 2022, 10(1): 21

    Yan Liu, Qing-Yun Yu, Ze-Ming Chen, Hao-Yang Qiu, Rui Chen, Shao-Ji Jiang, Xin-Tao He, Fu-Li Zhao, Jian-Wen Dong. Meta-objective with sub-micrometer resolution for microendoscopes[J]. Photonics Research, 2021, 9(2): 106
    Download Citation