• Chinese Journal of Quantum Electronics
  • Vol. 37, Issue 5, 556 (2020)
Jian HUANG1、2、* and Ke DENG1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2020.05.005 Cite this Article
    HUANG Jian, DENG Ke. Theoretical challenges in research of atmospheric coherent laser communication[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 556 Copy Citation Text show less
    References

    [1] Sodnik Z, Sans M. Extending EDRS to laser communication from space to ground [C]. Proceedings of International Conference on Space Optical Systems and Applications, 2012, 12: 9-14.

    [2] Zech H, Heine F, Trondle D, et al. LCT for EDRS: LEO to GEO optical communications at 1, 8 Gbps between Alphasat and Sentinel 1a [C]. Proceedings of SPIE, 2015, 9647: 96470J.

    [3] Seel S, Kmpfner H, Heine F, et al. Space to ground bidirectional optical communication link at 5. 6 Gbps and EDRS connectivity outlook [C]. Proceedings of IEEE, 2011: 1-7.

    [4] Hauschildt H, Gallou N, Mezzasoma S, et al. Global quasi-real-time-services back to Europe: EDRS Global [C]. Proceedings of SPIE, 2019, 11180: 111800X.

    [5] Saucke K, Seiter C, Heine F, et al. The Tesat transportable adaptive optical ground station [C]. Proceedings of SPIE, 2016, 9739: 973906.

    [6] Winick K. Atmospheric turbulence-induced signal fades on optical heterodyne communication links [J]. Applied Optics, 1986, 25(11): 1817-1825.

    [7] Liu C, Chen S Q, Li X Y, et al. Performance evaluation of adaptive optics for atmospheric coherent laser communications [J]. Optics Express, 2014, 22(13): 15554-15563.

    [8] Belmonte A, Kahn J. Performance of synchronous optical receivers using atmospheric compensation techniques [J]. Optics Express, 2008, 16(18): 14151-14162.

    [9] Zhu X M, Kahn J. Free-space optical communication through atmospheric turbulence channels [J]. IEEE Transactions on Communications, 2002, 50(8): 1293-1300.

    [10] Huang J, Mei H P, Deng K, et al. Signal to noise ratio of free space homodyne coherent optical communication after adaptive optics compensation [J]. Optics Communications, 2015, 356: 574-577.

    [11] Ma J, Ma L, Yang Q B, et al. Statistical model of the efficiency for spatial light coupling into a single-mode fiber in the presence of atmospheric turbulence [J]. Applied Optics, 2015, 54(31): 9287-9293.

    [12] Horwath J, David F, Knapek M, et al. Coherent transmission feasibility analysis [C]. Proceedings of SPIE, 2005, 5712: 13-23.

    [13] Cao J T, Zhao X H, Liu W, et al. Performance analysis of a coherent free space optical communication system based on experiment [J]. Optics Express, 2017, 25(13): 15299-15312.

    [14] Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications [J]. Optics Communications, 2016, 361: 21-24.

    [15] Huang J, Deng K, Liu C, et al. Effectiveness of adaptive optics system in satellite-to-ground coherent optical communication [J]. Optics Express, 2014, 22(13): 16000-16007.

    [16] Anbarasi K, Hemanth C, Sangeetha R. A review on channel models in free space optical communication systems [J]. Optics and Laser Technology, 2017, 97: 161-171.

    [18] Wang T, Strohbehn J. Log-normal paradox in atmospheric scintillations [J]. Journal of the Optical Society of America A, 1974, 64(5): 583-591.

    [19] Andrews L, Phillips R. Laser Beam Propagation Through Random Media [M]. Bellingham: SPIE Press, 2005.

    [20] Huang J. Non-lognormal probability density function of scintillation in weak regime [C]. Optical Society of America, 2017: PW2D. 3.

    [21] Johns Hopkins Turbulence Database (JHTDB) [OL]. http://turbulence. pha. jhu. edu/.

    [22] Deep Turbulence MURI [OL]. https://sites. google. com/site/deepturbulencemuri/home.

    [23] Huang J, Liu C, Deng K, et al. Probability of the residual wavefront variance of an adaptive optics system and its application [J]. Optics Express, 2016, 24(3): 2818-2829.

    [24] Hardy J. Adaptive Optics for Astronomical Telescopes [M]. Oxford University Press, 1998.

    [25] Tyson R. Principles of Adaptive Optics [M]. 3nd ed., CRC press, 2010.

    [26] Berkefeld T, Soltau D, Czichy R, et al. Adaptive optics for satellite-to-ground laser communication at the 1 m telescope of the ESA Optical Ground Station, Tenerife, Spain [C]. Proceedings of SPIE, 2010, 7736: 77364C.

    [27] Tyson R, Canning D E. Bit-error rate improvement of a laser communication system with low-order adaptive optics [C]. Proceedings of SPIE, 2002, 4821: 82-87.

    [28] Roberts L, Page N, Burruss R S, et al. Conceptual design of the adaptive optics system for the laser communication relay demonstration ground station at Table Mountain [C]. Proceedings of SPIE, 2013, 8610: 86100N.

    [29] Wang S F, Wang X T, Zou X Y, et al. Experiment layout of space laser communication system based on adaptive optical system [J]. Advanced Materials Research, 2011, 287: 3020-3023.

    [30] Anzuola E, Belmonte A. Experimental analysis of adaptive optics compensation in free-space coherent laser communications [C]. Proceedings of SPIE, 2016, 9979: 99790M.

    [31] Weyrauch T, Vorontsov M. Free-space laser communications with adaptive optics: Atmospheric compensation experiments [J]. Journal of Optical and Fiber Communications Reports, 2004, 1: 355-379.

    [32] Schwartz N, Védrenne N, Michau V, et al. Mitigation of atmospheric effects by adaptive optics for free-space optical communications [C]. Proceedings of SPIE, 2009, 7200: 72000J.

    [33] Gladysz S, Christou J, Bradford L, et al. Temporal variability and statistics of the Strehl ratio in adaptive-optics images [J]. Publications of the Astronomical Society of the Pacific, 2008, 120(872): 1132.

    [34] Yaitskova N, Esselborn M, Gladysz S. Statistical moments of the Strehl ratio [C]. Proceedings of SPIE, 2012, 8447: 84475Y.

    [35] Christou J, Mighell K, Makidon R. Strehl ratio and image sharpness for adaptive optics [C]. Proceedings of SPIE, 2006, 6272: 62721Y.

    [36] Yura H, Fried D. Variance of the Strehl ratio of an adaptive optics system [J]. Journal of the Optical Society of America A, 1998, 15(8): 2107-2110.

    [37] Huang J, Zhou H, Yang J S, et al. Temporal statistics of residual wavefront variance of an adaptive optics system [J]. Journal of Optics, 2019, 21(12): 125606.

    [38] Cao G R, Yu X. Accuracy analysis of a Hartmann-Shack wavefront sensor operated with a faint object [J]. Optical Engineering, 1994, 33(7): 2331-2336.

    [39] Noll R. Zernike polynomials and atmospheric turbulence [J]. Journal of the Optical Society of America A, 1976, 66(3): 207-211.

    HUANG Jian, DENG Ke. Theoretical challenges in research of atmospheric coherent laser communication[J]. Chinese Journal of Quantum Electronics, 2020, 37(5): 556
    Download Citation