• Acta Optica Sinica
  • Vol. 34, Issue 10, 1014002 (2014)
Wang Zefeng1、* and Yu Fei2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/aos201434.1014002 Cite this Article Set citation alerts
    Wang Zefeng, Yu Fei. Diode-Pumped Single-Pass Mid-Infrared Fiber Gas Laser[J]. Acta Optica Sinica, 2014, 34(10): 1014002 Copy Citation Text show less
    References

    [1] Y Kalisky, O Kalisky. The status of high-power lasers and their applications in the battlefield [J]. Opt Eng, 2010, 49(9): 091003.

    [2] Jianfeng Li, Darren D Hudson, Stuart D Jackson. High-power diode-pumped fiber operating at 3 μm [J]. Opt Lett, 2011, 36(18): 3642-3644.

    [3] Stuart D Jackson. Towards high-power mid-infrared emission from a fiber laser [J]. Nature Photonics, 2012, 16(6): 423-431.

    [4] M Bernier, V Fortin, N Caron, et al.. Mid-infrared chalcogenide glass Raman fiber laser [J]. Opt Lett, 2013, 38(2): 127-129.

    [5] Ori Henderson-Sapir, J Munch, D J Ottaway. Mid-infrared fiber laser at and beyond 3.5 μm using dual-wavelength pumping [J]. Opt Lett, 2014, 39(3): 493-496.

    [6] M Bernier, V Fortin, M El-Amraoui, et al.. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber [J]. Opt Lett, 2014, 39(7): 2052-2055.

    [7] T Y Chang, O R Wood. An optically pumped CO2 laser [J]. IEEE J Quantum Electron, 1972, 8(6): 598-599.

    [8] H R Schlossberg, H R Fetterman. Optically pumped vibrational transition laser in OCS [J]. Appl Phys Lett, 1975, 26(6): 316-318.

    [9] H C Miller, D T Radzykewycz, G Hager. An optically pumped mid-infrared HBr laser [J]. IEEE J Quantum Electron, 1994, 30(10): 2395-2400.

    [10] J E McCord, H C Miller, G Hager, et al.. Experimental investigation of an optically pumped mid-infrared carbon monoxide laser [J]. IEEE J Quantum Electron, 1999, 35(11): 1602-1612.

    [11] C S Kletecka, N Campbell, C R Jones, et al.. Cascade lasing of molecular HBr in the four micron region pumped by a NdYAG laser [J]. IEEE J Quantum Electron, 2004, 40(10): 1471-1477.

    [12] T Ehrenreich, B Zhdanov, T Takekoshi, et al.. Diode pumped cesium laser [J]. Electron Lett, 2005, 41(7): 415-416.

    [13] A V V Nampoothiri, A Ratanavis, N Campbell, et al.. Molecular C2H2 and HCN lasers pumped by an optical parametric oscillator in the 1.5-μm band [J]. Opt Express, 2010, 18(3): 1946-1951.

    [14] R F Cregan, B J Mangan, J C Knight, et al.. Single-mode photonic band gap guidance of light in air [J]. Science, 1999, 285(5433): 1537-1539.

    [15] F Benabid, J C Knight, G Antonopoulos, et al.. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber [J]. Science, 2002, 298(5592): 399-402.

    [16] F Benabid, G Bouwmans, J C Knight, et al.. Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen [J]. Phys Rev Lett, 2004, 93(12): 123903.

    [17] F Couny, F Benabid, P J Roberts, et al.. Generation and photonic guidance of multi-octave optical-frequency combs [J]. Science, 2007, 318(5853): 1118-1121.

    [18] B Beaudou, F Couny, Y Y Wang, et al.. Matched cascade of bandgap-shift and frequency-conversion using stimulated Raman scattering in a tapered hollow-core photonic crystal fibre [J]. Opt Express, 2010, 18(12): 12381-12390.

    [19] A M Jones, A V V Nampoothiri, A Ratanavis, et al.. Mid-infrared gas filled photonic crystal fiber laser based on population inversion [J]. Opt Express, 2011, 19(3): 2309-2316.

    [20] A M Jones, C Fourcade-Dutin, C Mao, et al.. Characterization of mid-infrared emissions from C2H2, CO, CO2, and HCN-filled hollow fiber lasers [C]. SPIE, 2012, 8237: 82373Y.

    [21] A V Vasudevan Nampoothiri, Andrew M Jones, C Fourcade-Dutin, et al.. Hollow-core optical fiber gas lasers (HOFGLAS): A review (Invited) [J]. Opt Materials Express, 2012, 2(7): 948-961.

    [22] B M Trabold, A Abdolvand, T G Euser, et al.. Efficient anti-Stokes generation via intermodal stimulated Raman scattering in gas-filled hollow core PCF [J]. Opt Express, 2013, 21(24): 29711-29717.

    [23] Zefeng Wang, Fei Yu, William Wadsworth, et al.. 1.9 μm coherent source generation in hydrogen-filled hollow core fiber by stimulated Raman scattering [C]. Optical Fiber Communication Conference, 2014.

    [24] Fei Yu, William J Wadsworth, Jonathan C Knight. Low loss silica hollow core fibers for 3~4 μm spectral region [J]. Opt Express, 2012, 20(10): 11153-11158.

    [25] Fei Yu, Jonathan C Knight. Spectral attenuation limits of silica hollow core negative curvature fiber [J]. Opt Express, 2013, 21(18): 21466-21471.

    [26] Fei Yu. Hollow Core Negative Curvature Optical Fibers [D]. Bath: University of Bath, 2014. 76-88.

    [27] Anthony E Siegman. Lasers [M]. Sausalito: University Science Books, 1986. 157-167.

    [28] W C Swann, S L Gilbert. Pressure-induced shift and broadening of 1510~1540 nm acetylene wavelength calibration lines [J]. J Opt Soc Am B, 2000, 17(7): 1263-1270.

    CLP Journals

    [1] Gu Bo, Chen Yubin, Wang Zefeng. Red, Green and Blue Laser Emissions from H2-Filled Hollow-Core Fiber by Stimulated Raman Scattering[J]. Acta Optica Sinica, 2016, 36(8): 806005

    [2] Chen Yubin, Gu Bo, Wang Zefeng, Lu Qisheng. 1.5 μm Fiber Gas Raman Laser Source[J]. Acta Optica Sinica, 2016, 36(5): 506002