• Chinese Journal of Quantum Electronics
  • Vol. 33, Issue 3, 348 (2016)
Xiao HUANG1、*, Yanlin GUO1, Yi HONG1, Junguo DONG1, Wei GAO2, Mei LI2, Zhengxu HUANG2, Zhong FU3, Ping CHENG1, and Zhen ZHOU2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3969/j.issn.1007-5461. 2016.03.015 Cite this Article
    HUANG Xiao, GUO Yanlin, HONG Yi, DONG Junguo, GAO Wei, LI Mei, HUANG Zhengxu, FU Zhong, CHENG Ping, ZHOU Zhen. Characteristic observation of atmospheric aerosol extinction based on cavity ring-down spectroscopy[J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 348 Copy Citation Text show less
    References

    [1] Yu Yong, Niu Shengjie, Zhang Hua, et al. Regional climate effects of internally and externally mixed aerosols over China[J]. Acta Meteor. Sinica, 2013, 27(1): 110-118.

    [2] Nakayamaa Tomoki, Hagino Rie, Matsumi Yutaka, et al. Measurements of aerosol optical properties in central Tokyo during summertime using cavity ring-down spectroscopy: Comparison with conventional techniques[J]. Atmospheric Environment, 2010, 44: 3034-3042.

    [3] Stevens B. Untangling aerosol effects on clouds and precipitation in a buffered system[J]. Nature, 2009, 461(7264): 607-613.

    [4] Ramachandran S, Srivastava S, Kedia R, et al. Contribution of natural and anthropogenic aerosols to optical properties and radiative effects over an urban location[J]. Environmental Research Letters, 2012, 7(3): 1-11.

    [5] IPCC. Climate Change 2013: The physical science basis, in contribution of working group 1(WGI) to the fifth assessment report of the IPCC[R]. 2013: 18-24.

    [7] Yu Y, Niu S, Zhang H, et al. Regional climate effects of internally and externally mixed aerosols over China[J]. Acta Meteorologica Sinica, 2013, 27(1): 110-118.

    [8] Li Z Q, Lee K H, Wang Y S, et al. First observation-based estimates of cloud-free aerosol radiative forcing across China[J]. Journal of Geophysical Research: Atmospheres, 2010, 115: 1383-1392.

    [9] Andreae M O, Schmid O, Yang H, et al. Optical properties and chemical composition of the atmospheric aerosol in urban Guangzhou, China[J]. Atmospheric Environment, 2008, 42(25): 6335-6350.

    [10] Müller T, Nowak A, Wiedensohler A. Angular illumination and truncation of three different integrating nephelometers: Implications for empirical, size-based corrections[J]. Aerosol Science and Technology, 2009, 43: 581-586.

    [11] Schladitz A, Müller T, Nordmann S, et al. In situ aerosol characterization at cape verde part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties[J]. Tellus, Series B-Chemical and Physical Meteorology, 2011, 63(4): 549-572.

    [12] Langridge J M, Richardson M S, Lack D, et al. Aircraft instrument for comprehensive characterization of aerosol optical properties, part I: Wavelength-dependent optical extinction and its relative humidity dependence measured using cavity ringdown spectroscopy[J]. Aerosol Science and Technology, 2011, 45: 1305-1318.

    [13] Li L, Chen J M, Chen H, et al. Monitoring optical properties of aerosols with cavity ring-down spectroscopy[J]. Aerosol Science, 2011, 42: 277-284.

    [14] Chen H, Winderlich J, Gerbig C, et al. High-accuracy continuous airborne measurements of greenhouse gases (CO2 and CH4) using the cavity ring-down spectroscopy (CRDS) technique[J]. Atmospheric Measurement Techniques, 2010, 3: 375-386.

    [15] Lang-Yona N, Abo-Riziq A, Erlick C, et al. Interaction of internally mixed aerosols with light[J]. Physical Chemistry Chemical Physics, 2010, 12: 21-31.

    [16] Li L, Chen J, Wang L, et al. Aerosol single scattering albedo affected by chemical composition: An investigation using CRDS combined with MARGA[J]. Atmospheric Research, 2013, 124(5): 149-157.

    [17] Benjamin T B, Francisco C G, Meyers S R, et al. Laboratory-measured optical properties of inorganic and organic aerosols at relative humidities up to 95%[J]. Aerosol Science and Technology, 2012, 46: 178-190.

    [19] Flores J M, Bar-Or R Z, Bluvshtein N, et al. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties[J]. Atmospheric Chemistry and Physics, 2012, 12: 5511-5521.

    [20] Stock M, Cheng Y F, Birmili W, et al. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: Implications for regional direct radiative forcing under clean and polluted conditions[J]. Atmospheric Chemistry and Physics, 2011, 11: 4251-4271.

    [21] Hegg D A, Livingston J, Hobbs P V, et al. Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States[J]. Journal of Geophysical Research, 1997, 102(D21): 25293.

    [22] Gasso S, Hegg D A, Covert D S, et al. Influence of humidity on the aerosol scattering coefficient and its effect on the upwelling radiance during ACE-2[J]. Tellus Series B-Chemical and Physical Meteorology, 2000, 52(2): 546-567.

    [23] Attwood A R, Greenslade M E. Optical properties and associated hygroscopicity of clay aerosols[J]. Aerosol Science and Technology, 2011, 45: 1350-1359.

    [24] Massoli P, Bates T S, Quinn P K, et al. Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing[J]. Journal of Geophysical Research, 2009, 114: 1-17.

    HUANG Xiao, GUO Yanlin, HONG Yi, DONG Junguo, GAO Wei, LI Mei, HUANG Zhengxu, FU Zhong, CHENG Ping, ZHOU Zhen. Characteristic observation of atmospheric aerosol extinction based on cavity ring-down spectroscopy[J]. Chinese Journal of Quantum Electronics, 2016, 33(3): 348
    Download Citation