• Acta Optica Sinica
  • Vol. 44, Issue 19, 1912002 (2024)
Zixu Dai1, Guohui Yang2, Yiheng Gao1, Zhilong Su1,3,4, and Dongsheng Zhang1,3,4,*
Author Affiliations
  • 1Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200444, China
  • 2People's Liberation Army of China 63853 Troops, Baicheng 137001, Jilin , China
  • 3Shanghai Institute of Aircraft Mechanics and Control, Shanghai 200092, China
  • 4Shaoxing Institute of Technology, Shanghai University, Shaoxing 312074, Zhejiang , China
  • show less
    DOI: 10.3788/AOS240858 Cite this Article Set citation alerts
    Zixu Dai, Guohui Yang, Yiheng Gao, Zhilong Su, Dongsheng Zhang. Large Displacement Measurement Method Based on Panning 3D Vision[J]. Acta Optica Sinica, 2024, 44(19): 1912002 Copy Citation Text show less
    Schematic diagram of 15-bit coding point. ID=0, 1, 2, 3, 4, 5
    Fig. 1. Schematic diagram of 15-bit coding point. ID=0, 1, 2, 3, 4, 5
    Coding point images captured with binocular camera. (a) Left camera; (b) right camera
    Fig. 2. Coding point images captured with binocular camera. (a) Left camera; (b) right camera
    Calibration process for extrinsic parameters
    Fig. 3. Calibration process for extrinsic parameters
    Measurement and calculation process of panning system
    Fig. 4. Measurement and calculation process of panning system
    Experimental setup for displacement measurement of binocular vision system
    Fig. 5. Experimental setup for displacement measurement of binocular vision system
    Measurement results. (a) Displacement; (b) error
    Fig. 6. Measurement results. (a) Displacement; (b) error
    Reconstruction of corner points on checkerboard. (a) Reconstruction results under two poses; (b) comparison of results after transformation to global coordinate system
    Fig. 7. Reconstruction of corner points on checkerboard. (a) Reconstruction results under two poses; (b) comparison of results after transformation to global coordinate system
    Measurement image of panning experiment. (a) One-dimensional mobile platform; (b) initial field of view; (c) field of view after panning
    Fig. 8. Measurement image of panning experiment. (a) One-dimensional mobile platform; (b) initial field of view; (c) field of view after panning
    3D displacement before and after transformation. (a) Before transformation; (b) after transformation
    Fig. 9. 3D displacement before and after transformation. (a) Before transformation; (b) after transformation
    Calculation result of target point. (a) Displacement calculation result; (b) relative error
    Fig. 10. Calculation result of target point. (a) Displacement calculation result; (b) relative error
    Rotation vector /(°)Translation vector /mm
    (3.05, 33.87, 2.14)(-4992.46, 43.50, 1703.63)
    Table 1. Extrinsic parameter calibration results of binocular vision systems
    Rotation matrixTranslation vector /mm
        0.9997    0.002070.02434    0.000216    0.99560.09353-0.02443-0.093510.9953(-141.200, -15.708, -379.590)
    Table 2. Solution of coordinate system transformation
    PoseRotation vector /(°)Translation vector /mm
    Pose 1(3.47, 26.66, 4.84)(-4123.59, 5.61, 902.69)
    Pose 2(-0.62, 26.77, -3.32)(-4028.50, 136.89, 1336.72)
    Table 3. Extrinsic parameter calibration results of panning vision systems
    Rotation matrixTranslation vector /mm
    0.9998  -0.00924-0.017010.00474  0.9689-0.2474  0.01877  0.2473  0.9688(62.217, -123.520, 159.240)
    Table 4. Rigid body transformation solution results of panning vision systems
    Zixu Dai, Guohui Yang, Yiheng Gao, Zhilong Su, Dongsheng Zhang. Large Displacement Measurement Method Based on Panning 3D Vision[J]. Acta Optica Sinica, 2024, 44(19): 1912002
    Download Citation