• Infrared and Laser Engineering
  • Vol. 48, Issue 6, 603007 (2019)
Gao Peng1, Wen Kai1、2、3, Sun Xueying1, Yao Baoli2, and Zheng Juanjuan1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/irla201948.0603007 Cite this Article
    Gao Peng, Wen Kai, Sun Xueying, Yao Baoli, Zheng Juanjuan. Review of resolution enhancement technologies in quantitative phase microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603007 Copy Citation Text show less
    References

    [1] Platt B C, Shack R. History and principles of Shack-Hartmann wavefront sensing [J]. Journal of Refractive Surgery, 2001, 17(5): S573-S580.

    [2] Bon P, Maucort G, Wattellier B, et al. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells [J]. Optics Express, 2009, 17(15): 13080-13094.

    [3] Wei Q, Li Y, Vargas J, et al. Principal component analysis-based quantitative differential interference contrast microscopy [J]. Optics Letters, 2019, 44(1): 45-48.

    [4] Cuche E, Bevilacqua F, Depeursinge C. Digital holography for quantitative phase-contrast imaging [J]. Optics Letters, 1999, 24(5): 291-293.

    [5] Waheb B, Ting-Wei S, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J]. Optics Express, 2010, 18(11): 11181-11191.

    [6] Kyoohyun K, Hyeok Y, Monica D S, et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography [J]. Journal of Biomedical Optics, 2014, 19(1): 011005-011018.

    [7] Marquet P, Depeursinge C, Magistretti P J. Review of quantitative phase-digital holographic microscopy: promising novel imaging technique to resolve neuronal network activity and identify cellular biomarkers of psychiatric disorders [J]. Neurophotonics, 2014, 1(2): 020901-020915.

    [8] Mitchison J M. Single cell studies of the cell cycle and some models [J]. Theoretical Biology & Medical Modelling, 2005, 2(1): 4-9.

    [9] Bedrossian M, Lindensmith C, Nadeau J L. Digital holographic microscopy, a method for detection of microorganisms in plume samples from enceladus and other icy worlds [J]. Astrobiology, 2017, 17(9): 913-925.

    [10] Hsu W C, Su J W, Chang C C, et al. Investigating the backscattering characteristics of individual normal and cancerous cells based on experimentally determined three-dimensional refractive index distributions [C]//SPIE, 2012, 8553: 85531O.

    [11] Lee S Y, Park H J, Kim K, et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus [J]. Scientific Reports, 2017, 7: 1039.

    [12] Haifler M, Girshovitz P, Dardikman G, et al. Interferometric phase microscopy for label-free morphological evaluation of sperm cells [J]. Fertility and Seterility, 2015, 104(1): 43-47.

    [13] Shaked N T, Satterwhite L L, Telen M J, et al. Quantitative microscopy and nanoscopy of sickle red blood cells performed by wide field digital interferometry [J]. Journal of Biomedical Optics, 2011, 16(3): 030506.

    [14] Mico V, Zalevsky Z, García J. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution[J]. Optics Communications, 2008, 281(17): 4273-4281.

    [15] Jiang H Z, Zhao J L, Di J L, et al. Numerically correcting the joint misplacement of the sub-holograms in spatial synthetic aperture digital Fresnel holography [J]. Optics Express, 2009, 17(21): 18836-18842.

    [16] Schwarz C J, Kuznetsova Y, Brueck S R J. Imaging interferometric microscopy [J]. Optics Letters, 2003, 28(16):1424-1426.

    [17] Yuan C, Situ G, Pedrini G, et al. Resolution improvement in digital holography by angular and polarization multiplexing [J]. Applied Optics, 2011, 50(7):B6-B11.

    [18] Mico V, Zalevsky Z, Garcia-Martinez P, et al. Single-step superresolution by interferometric imaging [J]. Optics Express, 2004, 12(12): 2589-2596.

    [19] Hillman T R, Gutzler T, Alexandrov S A, et al. High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy [J]. Optics Express, 2009, 17(10): 7873-7892.

    [20] Micó V, Zalevsky Z, Ferreira C, et al. Superresolution digital holographic microscopy for three-dimensional samples [J]. Optics Express, 2008, 16(23): 19260-19270.

    [21] Chowdhury S, Izatt J. Structured illumination quantitative phase microscopy for enhanced resolution amplitude and phase imaging [J]. Biomedical Optics Express, 2013, 4(10):1795-1805.

    [22] Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy[J]. Optics Letters, 2013, 38(8):1328-1330.

    [23] Gao P, Yao B L, Min J W, et al. Autofocusing of digital holographic microscopy based on off-axis illuminations [J]. Optics Letters, 2012, 37(17): 3630-3632.

    [24] Goodman J. Speckle Phenomena in Optics: Theory and Applications [M]. American: Roberts & Company, 2006.

    [25] Tiziani H J, Pedrini G. From speckle pattern photography to digital holographic interferometry [Invited] [J]. Applied Optics, 2013, 52(1): 30-44.

    [26] García J, Zalevsky Z, Fixler D. Synthetic aperture superresolution by speckle pattern projection [J]. Optics Express, 2005, 13(16): 6073-6078.

    [27] Park Y, Choi W, Yaqoob Z, et al. Speckle-field digital holographic microscopy [J]. Optics Express, 2009, 17(15):12285-12292.

    [28] Zheng J J, Gao P, Yao B L, et al. Digital holographic microscopy with phase-shift-free structured illumination [J]. Photonics Research, 2014, 2(3): 87-91.

    [29] Ou X, Horstmeyer R, Zheng G, et al. High numerical aperture Fourier ptychography: Principle, implementation and characterization [J]. Optics Express, 2015, 23(3): 3472-3491.

    [30] Faulkner H M L, Rodenburg J. Movable aperture lensless transmission microscopy: A novel phase retrieval algorithm[J]. Physical Review Letters, 2004, 93(2): 023903.

    [32] Ou X, Horstmeyer R, Yang C, et al. Quantitative phase imaging via Fourier ptychographic microscopy [J]. Optics Letters, 2013, 38(22): 4845-4848.

    [33] Zheng G A, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy [J]. Nature Photonics, 2013, 7: 739-745.

    [34] Tian L, Liu Z, Yeh L-H, et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy [J]. Optica, 2015, 2(10): 904-911.

    [35] He X, Liu C, Zhu J. Single-shot Fourier ptychography based on diffractive beam splitting [J]. Optics Letters, 2018, 43(2):214-217.

    [36] Tian L, Li X, Ramchandran K, et al. Multiplexed coded illumination for Fourier ptychography with an LED array microscope [J]. Biomedical Optics Express, 2014, 5(7): 2376-2389.

    [37] Sun J S, Zuo C, Zhang L, et al. Resolution-enhanced Fourier ptychographic microscopy based on high-numerical-aperture illuminations [J]. Scientific Reports, 2017, 7:1187.

    [38] Maiden A M, Humphry M J, Zhang F, et al. Superresolution imaging via ptychography [J]. Journal of the Optical Society of America A, 2011, 28(4): 604-612.

    [39] Thibault P, Menzel A. Reconstructing state mixtures from diffraction measurements [J]. Nature, 2013, 494:68.

    [40] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform [J]. Optics Letters, 1978, 3(1): 27-29.

    [41] Liu Cheng, Pan Xingchen. Coherent diffractive imaging based on the multiple beam illumination with cross grating[J]. Acta Physica Sinica, 2013, 62(18): 184204.

    [42] Fan Jiadong, Jiang Huaidong. Coherent X-ray diffraction imaging and its applications in materials science and biology[J]. Acta Physica Sinica, 2012, 61(21): 218702.

    [43] Gao P, Pedrini G, Zuo C, et al. Phase retrieval using spatially modulated illumination [J]. Optics Letters, 2014, 39(12): 3615-3618.

    [44] Zhang Jianlin, Sun Jiasong, Chen Qian, et al. Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy [J]. Scientific Reports, 2017, 7: 11777. (in Chinese)

    [45] Wu Y, Zhang Y, Luo W, et al. Demosaiced pixel super-resolution for multiplexed holographic color imaging [J]. Scientific Reports, 2016, 6: 28601.

    [46] Luo W, Greenbaum A, Zhang Y, et al. Synthetic aperture-based on-chip microscopy [J]. Light: Science & Applications, 2015, 4: e261.

    [47] Stockmar M, Cloetens P, Zanette I, et al. Near-field ptychography: phase retrieval for inline holography using a structured illumination [J]. Scientific Reports, 2013, 3: 1927.

    [48] Claus D, Rodenburg J M. Pixel size adjustment in coherent diffractive imaging within the Rayleigh-Sommerfeld regime [J]. Applied Optics, 2015, 54(8): 1936-1944.

    [49] Bishara W, Su T-W, Coskun A F, et al. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution [J]. Optics Express, 2010, 18(11):11181-11191.

    [50] Greenbaum A, Luo W, Khademhosseinieh B, et al. Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy [J]. Scientific Reports, 2013, 3: 1717.

    [52] Su T, Xue L, Ozcan A. High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories 2012[J]. Nature Photonics, 2013, 7: 739-745.

    Gao Peng, Wen Kai, Sun Xueying, Yao Baoli, Zheng Juanjuan. Review of resolution enhancement technologies in quantitative phase microscopy[J]. Infrared and Laser Engineering, 2019, 48(6): 603007
    Download Citation