• Laser & Optoelectronics Progress
  • Vol. 59, Issue 11, 1114004 (2022)
Xudong Huang, Tao Wang*, Shaowu Hu, Tao Yao, Runpeng Miao, Qingchuan Kang, and Yizhi Zhang
Author Affiliations
  • College of Mechanical Engineering, Hebei University of Technology, Tianjing300401, China
  • show less
    DOI: 10.3788/LOP202259.1114004 Cite this Article Set citation alerts
    Xudong Huang, Tao Wang, Shaowu Hu, Tao Yao, Runpeng Miao, Qingchuan Kang, Yizhi Zhang. Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1114004 Copy Citation Text show less
    Schematic of laser polishing equipment
    Fig. 1. Schematic of laser polishing equipment
    TC4 alloy after laser polishing. (a) Substrate surface and polished field; (b) surface after laser polishing
    Fig. 2. TC4 alloy after laser polishing. (a) Substrate surface and polished field; (b) surface after laser polishing
    Schematic of laser polishing. (a) Trajectory of laser polishing; (b) mechanism diagram of laser polishing
    Fig. 3. Schematic of laser polishing. (a) Trajectory of laser polishing; (b) mechanism diagram of laser polishing
    Schematic of factors influencing laser polishing
    Fig. 4. Schematic of factors influencing laser polishing
    Surface microscopic morphologies. (a) Original surface; (b) No. 7 -1 sample; (c) No. 9-1 sample; (d) No. 3-1 sample
    Fig. 5. Surface microscopic morphologies. (a) Original surface; (b) No. 7 -1 sample; (c) No. 9-1 sample; (d) No. 3-1 sample
    Roughness changes before and after laser polishing
    Fig. 6. Roughness changes before and after laser polishing
    Range effect diagrams.(a) Range variation diagram of defocusing distance; (b) range variation diagram of laser power; (c) range variation diagram of repetition frequency; (d) range variation diagram of scanning speed
    Fig. 7. Range effect diagrams.(a) Range variation diagram of defocusing distance; (b) range variation diagram of laser power; (c) range variation diagram of repetition frequency; (d) range variation diagram of scanning speed
    3D surface topographies of laser polishing. (a) Original surface; (b) surface after polishing with optimal parameters; (c) XY surface without polishing; (d) XY surface after polishing with optimal parameters
    Fig. 8. 3D surface topographies of laser polishing. (a) Original surface; (b) surface after polishing with optimal parameters; (c) XY surface without polishing; (d) XY surface after polishing with optimal parameters
    Surface microscopic morphologies. (a) No. 20 sample; (b) No. 9 sample
    Fig. 9. Surface microscopic morphologies. (a) No. 20 sample; (b) No. 9 sample
    Comparison between actual and predicted values
    Fig. 10. Comparison between actual and predicted values
    Effects of significant interaction terms on surface roughness. (a) Effects of laser power and repetition frequency; (b) effects of laser power and scanning speed; (c) effects of repetition frequency and scanning speed
    Fig. 11. Effects of significant interaction terms on surface roughness. (a) Effects of laser power and repetition frequency; (b) effects of laser power and scanning speed; (c) effects of repetition frequency and scanning speed
    CompositionAlVFeCONHTi
    Mass fraction /%5.50‒6.503.50‒4.500‒0.250‒0.080‒0.130‒0.130‒0.12Bal.
    Table 1. Main chemical compositions of TC4 titanium alloy
    VariableLowMediumHigh
    Defocusing distance /mm345
    Laser power /W202530
    Laser repetition frequency /kHz7090110
    Laser scanning speed /(mms-1165017001750
    Table 2. Level table of orthogonal experimental factors
    Sample No.h /mmP /Wf /kHzv /(mms-1Roughness /μmAverage roughness /μm
    FirstSecond
    1-13207016500.18680.17740.1821
    2-13259017000.15260.16400.1583
    3-133011017500.11480.13690.1259
    4-14209017500.22910.21870.2239
    5-142511016500.23290.24810.2405
    6-14307017000.19310.17830.1857
    7-152011017000.27750.28930.2834
    8-15257017500.19880.23760.2182
    9-15309016500.20220.19520.1987
    Table 3. Design matrix of orthogonal experiment and results
    Parameterh /mmP /Wf /kHzv /(mm⋅s-1
    K10.15540.22980.19530.2071
    K20.21670.20570.19360.2091
    K30.23340.17010.21660.1893
    R0.0780.05970.0230.0198
    Table 4. Range analysis results
    Sample No.h /mmP /Wf /kHzv /(mms-1Ra /μm
    15259017500.2340
    24259017000.1842
    34259017000.1968
    44209016500.1790
    55259016500.2301
    652511017000.2565
    742011017000.2611
    85309017000.2098
    93309017000.1115
    104257016500.1688
    114209017500.2340
    124309017500.1546
    1332511017000.1799
    1442511016500.2440
    154307017000.1818
    1643011017000.1878
    174309016500.1784
    183259017500.1756
    194207017000.2012
    205209017000.2732
    213257017000.1381
    224259017000.1932
    234259017000.2009
    244257017500.1982
    255257017000.2298
    2642511017500.2189
    273259016500.1422
    283209017000.1820
    294259017000.1955
    Table 5. BBD experimental parameters and results
    SourceSum of squaresMean squareFvaluePvalueReliability
    R2=0.9576RADJ2=0.9406RPRED2=0.9002
    Model0.0380.00475856.4< 0.0001Significant
    A0.0210.021251.14< 0.0001
    B0.0078310.00783192.83< 0.0001
    C0.0044190.00441952.39< 0.0001
    D0.000440.000445.220.0335
    BC0.0007250.0007258.590.0083
    BD0.0015510.00155118.380.0004
    CD0.00074370.00074378.820.0076
    C20.0011670.00116713.830.0014
    Residual0.0016870.00008436
    Lack of fit value0.0015320.000095782.480.1969Not significant
    Pure error0.00015470.00003868
    Total0.04
    Table 6. Variance analysis of surface roughness model
    Xudong Huang, Tao Wang, Shaowu Hu, Tao Yao, Runpeng Miao, Qingchuan Kang, Yizhi Zhang. Parameter Optimization of Laser Polishing Based on Orthogonal Experiment and Response Surface Method[J]. Laser & Optoelectronics Progress, 2022, 59(11): 1114004
    Download Citation