• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 5, 615 (2023)
LIU Mengyuan1、2、3、*, QI Yaoyao1、2、3, BAI Zhenxu1、2、3, ZHANG Yu1、2、3, WANG Jingjing1、2、3, DING Jie1、2、3, WANG Yulei1、2、3, and LYU Zhiwei1、2、3
Author Affiliations
  • 1Advanced Laser Technology Research Center, Hebei University of Technology, Tianjin 300401, China
  • 2Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
  • 3Tianjin Key Laboratory of Electronic Materials and Devices, Tianjin 300401, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.05.001 Cite this Article
    Mengyuan LIU, Yaoyao QI, Zhenxu BAI, Yu ZHANG, Jingjing WANG, Jie DING, Yulei WANG, Zhiwei LYU. Research progress of dual-wavelength mode-locked fiber laser[J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 615 Copy Citation Text show less
    Dual wavelength fiber laser based on NOLM mode locking technology[65]
    Fig. 1. Dual wavelength fiber laser based on NOLM mode locking technology[65]
    "Dirac Cone" band structure[77]
    Fig. 2. "Dirac Cone" band structure[77]
    Schematic diagram of Lyot filter
    Fig. 3. Schematic diagram of Lyot filter
    Switchable dual wavelength Er-doped fiber laser based on Lyot filter[104]
    Fig. 4. Switchable dual wavelength Er-doped fiber laser based on Lyot filter[104]
    Switchable dual wavelength laser based on PSFBG, MZI and Sagnac ring[114]
    Fig. 5. Switchable dual wavelength laser based on PSFBG, MZI and Sagnac ring[114]
    Schematic diagram of NPR filtering effect[118]
    Fig. 6. Schematic diagram of NPR filtering effect[118]
    Schematic diagram of tapered fiber[125]
    Fig. 7. Schematic diagram of tapered fiber[125]
    Switchable dual-wavelength laser based on PSFBG, MZI and Sagnac ring[125]
    Fig. 8. Switchable dual-wavelength laser based on PSFBG, MZI and Sagnac ring[125]
    MethodCentral wavelength /nm

    Repetition

    rate /MHz

    Spectral bandwidth /nm

    Pulse

    duration/ps

    Wavelength spacing /nmOutput power /mWRef.
    Dual-cavity1556.7, 1559.92500, 50000.18, 0.2317.7, 13.03.2-[58]
    1030, 104011.4, 11.40.34, 0.443.3, 2.534.89.1[60]
    1542, 156139.1, 39.13, 31.4, 1.75.643.3[62]
    1082.8, 1569.717.3, 17.30.3, 0.312.8, 9.2586.91.3[65]
    2D Materials1061.8, 1068.81.784.5, 2.161.4173.05[92]
    1533, 155820.83.7, 6.90.725.0-[93]
    1558.5, 1565.98.834.2, 4.40.67.410.1[95]
    1532.2, 1557.39.09, 9.083.3, 3.80.99, 0.9525.10.25[54]
    1561.6, 1562.13.540.25, 0.2516.050.510[100]
    Filtering effect1558, 15709.24, 9.242, 32.4, 2.112[37]
    1557.7, 1562.718.8--5.0-[105]
    1535, 15646.4, 6.44, 3.60.9, 1.0290.49[106]
    1539.8, 1552.35.92, 5.15----[109]
    1545.2, 1548.36.4, 6.6-700, 5723.0-[110]
    1559.0, 1602.410.23, 10.230.42, 0.428.1, 8.243.4-[119]
    1033.6, 1046.62.5-5601365[120]
    1038, 10572415.4, 10.815.41717.4[123]
    Table 1. Summary of dual-wavelength mode-locked fiber lasers
    Mengyuan LIU, Yaoyao QI, Zhenxu BAI, Yu ZHANG, Jingjing WANG, Jie DING, Yulei WANG, Zhiwei LYU. Research progress of dual-wavelength mode-locked fiber laser[J]. Chinese Journal of Quantum Electronics, 2023, 40(5): 615
    Download Citation