• Laser & Optoelectronics Progress
  • Vol. 48, Issue 4, 40601 (2011)
Zhou Ciming, Zhang Fang*, Ding Li, and Jiang Desheng
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop48.040601 Cite this Article Set citation alerts
    Zhou Ciming, Zhang Fang, Ding Li, Jiang Desheng. Progress of Radiation Effects on Performance of Optical Fiber Sensors[J]. Laser & Optoelectronics Progress, 2011, 48(4): 40601 Copy Citation Text show less
    References

    [1] F. Berghmans, Alberto Fernandez, Sylvain Girard et al.. Optical Wavegude Sensing and Imaging[M]. Berlin: Spring, 2008. 127~165

    [2] J. W. Berthold Iii. Overview of prototype fiber optic sensors for future application in nuclear environments[C]. SPIE, 1994, 2425: 74~83

    [3] J. A. C. Heijmans, L. K. Cheng, F. P. Wieringa. Optical fiber sensors for medical applications-Practical engineering considerations[C]. IFMBE Proceedings, 2008, 22: 2330~2334

    [4] Shi Bin. HV switchgear temperature on-line monitoring system with distributed optical fiber sensor[J]. High Voltage Engineering, 2007, 33(8): 169~173

    [5] Guo Tuan, Qiao Xueguang, Jia Zhenan et al.. Technology of fiber gratings sensing and its applications in petroleum industry[J]. Journal of Test and Measurement Technology, 2004, 18(3): 208~213

    [6] W. Ecke, Latka Ines, Willsch Reinhardt et al.. Fibre optic sensor network for spacecraft health monitoring[J]. Measurement Science and Technology, 2001, 12(1): 974~980

    [7] E. J. Friebele, C. G. Askins, A. B. Bosse et al.. Optical fiber sensors for spacecraft applications[J]. Smart Materials and Structures, 1999, 8(6): 813~838

    [8] K. Fujita, A Kimura, M Nakazawa et al.. Bragg peak shifts of fiber Bragg gratings in radiation environment[C]. SPIE, 2001, 4204: 184~191

    [9] H. Henschel, Stefan K. Hoeffgen, Katerina Krebber et al.. Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings[C]. IEEE, 2008. 2235~2242

    [10] H. Henschel, Stefan K. Hoeffgen, Jochen Kuhnhenn et al.. Influence of manufacturing parameters and temperature on the radiation sensitivity of fiber Bragg gratings[C]. IEEE, 2010, 57(4): 2029~2034

    [11] A. I. Gusarov, F. Berghmans, O. Deparis et al.. High total dose radiation effects on temperature sensing fiber Bragg gratings[J]. IEEE Photonics Technology Letters, 1999, 11(9): 1159~1161

    [12] G. Fernandez Fernandez, A. Gusarov F. Berghmans et al.. Long-term irradiation of fibre Bragg gratings in a low dose rate gamma-neutron radiation field[C]. Photonics for Space Environments VIII, 2002, 4823: 205~212

    [13] A. Gusarov, C. Chojetzki, I. Mckenzie et al.. Effect of the fiber coating on the radiation sensitivity of Type I FBGs[J]. IEEE, Photonics Technology Letters, 2008, 20(21): 1802~1804

    [14] A. Gusarov, S. Vasiliev, O. Medvedkov et al.. Stabilization of fiber Bragg gratings against gamma radiation[J]. IEEE Transactions on Nuclear Science, 2008, 55(4): 2205~2212

    [15] A. Gusarov, B. Brichard, D. N. Nikogosyan. Gamma-radiation effects on Bragg gratings written by femtosecond UV laser in Ge-doped fibers[C]. IEEE, 2010, 57(4): 2024~2028

    [16] Bi Weihong, Li Yiliang, Zhang Rui. Novel optic fiber pressure sensor[J]. Instrument Technique and Sensor, 2008, 8: 8~9+17

    [17] Francis Berghmans, Alberto Fernandez Fernandez, Frans Vos et al.. Radiation hardness of fiber optic sensors for monitoring and remote handling applications in nuclear environments[C]. SPIE, 1998, 3538: 28~39

    [18] Lai Chengchih, Lee Weiyu, Wang Wayseen. Gamma radiation effect on the fiber Fabry-Perot interference sensor[J]. IEEE, Photonics Technology Letters, 2003, 15(8): 1132~1134

    [19] H. Y. Liu, Don W. Miller, Joseph Talnagi. Gamma radiation resistant Fabry-Perot fiber optic sensors[J]. Review of Scientific Instruments, 2002, 73(8): 3112~3118

    [20] M. Nikles. Fibre optic distributed scattering sensing system: perspectives and challenges for high performance applications[J]. Chinese Journal of Scientific Instrument, 2007, 28: 1345~1352

    [21] D. Alasia. Study of the radiation effects on the properties of Brillouin scattering in standard Ge-doped optical fibres[C]. SPIE, 2005, 5855: 180~183

    [22] F. Jensen, Eiji Takada, Masaharu Nakazawa et al.. Distributed Raman temperature measurement system for monitoring of nuclear power plant coolant loops[C]. Proc. SPIE, 1996, 2895: 132~143

    [23] A. Kimura, Eiji Takada, Kaoru Fujita et al.. Application of a Raman distributed temperature sensor to the experimental fast reactor JOYO with correlation techniques[J]. Measurement Science and Technology, 2001, 12(7): 966~973

    [24] A. F. Fernandez, P. Rodeghiero, B. Brichard et al.. Radiation-tolerant Raman distributed temperature monitoring system for large nuclear infrastructures[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2689~2694

    [25] B. Tortech, M. Van Uffelen, A. Gusarov et al.. Gamma radiation induced loss in erbium doped optical fibers[J]. Journal of Non-Crystalline Solids, 2007, 353(5-7): 477~480

    [26] M. C. Paul, D. Bohra, A. Dhar et al.. Radiation response behavior of high phosphorous doped step-index multimode optical fibers under low dose gamma irradiation[J]. Journal of Non-Crystalline Solids, 2009, 355(28-30): 1496~1507

    [27] S. Girard, J. Keurinck, A. Boukenter et al.. Gamma-rays and pulsed X-ray radiation responses of nitrogen-germanium-doped and pure silica core optical fibers[J]. Nuclear Instruments and Methods in Physics Research B, 2004, 215(1-2): 187~195

    [28] B. Arvidsson, K. Dunn, C. Issever et al.. The radiation tolerance of specific optical fibres exposed to 650 kGy(Si) of ionizing radiation[J]. Journal of Instrumentation, 2009, 4: P07010

    [29] M. Sreckovic, A. Marinovik, V. Rajkovic et al.. Properties of fiber optical materials after exposure to nuclear radiation[C]. PROC, 1995, 1: 289~292

    Zhou Ciming, Zhang Fang, Ding Li, Jiang Desheng. Progress of Radiation Effects on Performance of Optical Fiber Sensors[J]. Laser & Optoelectronics Progress, 2011, 48(4): 40601
    Download Citation