• Acta Optica Sinica
  • Vol. 44, Issue 16, 1606002 (2024)
Lijuan Zhao1,2,3, Zhi Liang1, and Zhiniu Xu1,*
Author Affiliations
  • 1School of Electrical and Electronic Engineering, North China Electric Power University, Baoding 071003, Hebei , China
  • 2Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, Hebei , China
  • 3Baoding Key Laboratory of Optical Fiber Sensing and Optical Communication Technology, North China Electric Power University, Baoding 071003, Hebei , China
  • show less
    DOI: 10.3788/AOS240470 Cite this Article Set citation alerts
    Lijuan Zhao, Zhi Liang, Zhiniu Xu. A Twisted Photonic Crystal Fiber Capable of Supporting 66 Orbital Angular Momentum Modes for High-Quality Transmission[J]. Acta Optica Sinica, 2024, 44(16): 1606002 Copy Citation Text show less
    References

    [1] Lian Y D, Yu Y, Han S W et al. OAM beams generation technology in optical fiber: a review[J]. IEEE Sensors Journal, 22, 3828-3843(2022).

    [2] Allen L, Beijersbergen M W, Spreeuw R J et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185-8189(1992).

    [3] Xie Y C, Liang J Y, Ding D Q et al. Research progress of orbital angular momentum in optical wireless communication system[J]. Laser & Optoelectronics Progress, 60, 2100005(2023).

    [4] Zhao L J, Zhao H Y, Xu Z N et al. A design of novel photonic crystal fiber with low and flattened dispersion for supporting 84 orbital angular momentum modes[J]. Communications in Theoretical Physics, 73, 085501(2021).

    [5] Yue Y, Zhang L, Yan Y et al. Octave-spanning supercontinuum generation of vortices in an As2S3 ring photonic crystal fiber[J]. Optics Letters, 37, 1889-1891(2012).

    [6] Zhang L X, Wei W, Zhang Z M et al. Propagation properties of vortex beams in a ring photonic crystal fiber[J]. Acta Physica Sinica, 66, 014205(2017).

    [7] Bai X L, Chen H M, Zhang L F. Circular photonic crystal fiber supporting orbital angular momentum modes transmission[J]. Infrared and Laser Engineering, 48, 0222002(2019).

    [8] Wang W C, Wang N, Li K Y et al. A novel dual guided modes regions photonic crystal fiber with low crosstalk supporting 56 OAM modes and 4 LP modes[J]. Optical Fiber Technology, 57, 102213(2020).

    [9] Kabir M A, Ahmed K, Hassan M M et al. Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication[J]. Optics Communications, 475, 126192(2020).

    [10] Zhang H L, Wu Z F, Shum P P et al. Highly sensitive strain sensor based on helical structure combined with Mach-Zehnder interferometer in multicore fiber[J]. Scientific Reports, 7, 46633(2017).

    [11] Oh S, Lee K R, Paek U C et al. Fabrication of helical long-period fiber gratings by use of a CO2 laser[J]. Optics Letters, 29, 1464-1466(2004).

    [12] Shin W, Yu B A, Noh Y C et al. Bandwidth-tunable band-rejection filter based on helicoidal fiber grating pair of opposite helicities[J]. Optics Letters, 32, 1214-1216(2007).

    [13] Churikov V M, Kopp V I, Genack A Z. Chiral diffraction gratings in twisted microstructured fibers[J]. Optics Letters, 35, 342-344(2010).

    [14] Fu C L, Liu S, Wang Y et al. High-order orbital angular momentum mode generator based on twisted photonic crystal fiber[J]. Optics Letters, 43, 1786-1789(2018).

    [15] Zhang Y F, Li B Y, Xia C M et al. Orbit angular momentum supermode in chirality helical dual-core microstructure fiber[J]. Optics Communications, 475, 126245(2020).

    [16] Ren K L, Ren L Y, Liang J et al. Excitation of high-quality orbital angular momentum vortex beams in an adiabatically helical-twisted single-mode fiber[J]. Optics Express, 29, 8441-8450(2021).

    [17] Liu S, Zhou M, Shao L P et al. Torsion-tunable OAM mode generator based on oxyhydrogen-flame fabricated helical long-period fiber grating[J]. Optics Express, 30, 21085-21093(2022).

    [18] Sun X W, Wang H Q, Zhang C X. Propagation properties of vortex beams in a helically twisted photonic bandgap fiber[J]. IEEE Photonics Technology Letters, 35, 51-54(2023).

    [19] Zhao L J, Jiang H Q, Xu Z N. Helically twisted double-cladding-three-core photonic crystal fiber for generation of orbital angular momentum[J]. Acta Physica Sinica, 72, 134201(2023).

    [20] Zhang K C. Design and application of ring photonic crystal fiber based on orbital angular momentum[D], 12(2018).

    [21] Kuiri B, Dutta B, Sarkar N et al. Ultra-low loss polymer-based photonic crystal fiber supporting 242 OAM modes with high bending tolerance for multimode THz communication[J]. Results in Physics, 36, 105465(2022).

    [22] El Hamzaoui H, Ouerdane Y, Bigot L et al. Sol-gel derived ionic copper-doped microstructured optical fiber: a potential selective ultraviolet radiation dosimeter[J]. Optics Express, 20, 29751-29760(2012).

    [23] Vienne G, Xu Y, Jakobsen C et al. Ultra-large bandwidth hollow-core guiding in all-silica Bragg fibers with nano-supports[J]. Optics Express, 12, 3500-3508(2004).

    [24] Zhang F, Wang Y, Bai Z Y et al. Helicity enhanced torsion sensor based on liquid filled twisted photonic crystal fibers[J]. Sensors, 20, 1490(2020).

    [25] Qiu S, Yuan J H, Duan S N et al. High sensitivity temperature sensor based on a helically twisted photonic crystal fiber[J]. Results in Physics, 29, 104767(2021).

    [26] Zhang F, Liu S, Wang Y et al. Highly sensitive torsion sensor based on directional coupling in twisted photonic crystal fiber[J]. Applied Physics Express, 11, 042501(2018).

    [27] Israk M F, Razzak M A, Ahmed K et al. Ring-based coil structure photonic crystal fiber for transmission of orbital angular momentum with large bandwidth: outline, investigation and analysis[J]. Optics Communications, 473, 126003(2020).

    [28] Pakarzadeh H, Sharif V. Control of orbital angular momentum of light in optofluidic infiltrated circular photonic crystal fibers[J]. Optics Communications, 438, 18-24(2019).

    [29] Fujisawa T, Sato T, Saitoh K. Full-vector finite-element beam propagation method for helicoidal waveguides and its application to twisted photonic crystal fibers[J]. Journal of Lightwave Technology, 35, 2894-2901(2017).

    [30] Nicolet A, Zolla F, Agha Y O et al. Geometrical transformations and equivalent materials in computational electromagnetism[J]. COMPEL-the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 27, 806-819(2008).

    [31] Brunet C, Vaity P, Messaddeq Y et al. Design, fabrication and validation of an OAM fiber supporting 36 states[J]. Optics Express, 22, 26117-26127(2014).

    [32] Zhang H, Zhang X G, Li H et al. A design strategy of the circular photonic crystal fiber supporting good quality orbital angular momentum mode transmission[J]. Optics Communications, 397, 59-66(2017).

    [33] Han M Z, Liu Q, Sun Y D et al. A novel nested three-ring-core photonic crystal fiber for OAM transmission[J]. Optik, 270, 169981(2022).

    Lijuan Zhao, Zhi Liang, Zhiniu Xu. A Twisted Photonic Crystal Fiber Capable of Supporting 66 Orbital Angular Momentum Modes for High-Quality Transmission[J]. Acta Optica Sinica, 2024, 44(16): 1606002
    Download Citation