• Chinese Journal of Quantum Electronics
  • Vol. 42, Issue 2, 246 (2025)
ZHENG Liang1, LIU Chao1, ZHOU Zongquan1,2,*, and LI Chuanfeng1,2,**
Author Affiliations
  • 1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
  • 2Hefei National Laboratory, Hefei 230088, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2025.02.010 Cite this Article
    Liang ZHENG, Chao LIU, Zongquan ZHOU, Chuanfeng LI. Long⁃term optical memory based on crystal waveguide[J]. Chinese Journal of Quantum Electronics, 2025, 42(2): 246 Copy Citation Text show less
    References

    [1] Alexoudi T, Kanellos G T, Pleros N. Optical RAM and integrated optical memories: A survey[J]. Light, Science & Applications, 9, 91(2020).

    [2] Psaltis D. Coherent optical information systems[J]. Science, 298, 1359-1363(2002).

    [3] Hunter D K, Chia M C, Andonovic I. Buffering in optical packet switches[J]. Journal of Lightwave Technology, 16, 2081-2094(1998).

    [4] Hunter D K, Cornwell W D, Gilfedder T H et al. SLOB: A switch with large optical buffers for packet switching[J]. Journal of Lightwave Technology, 16, 1725-1736(1998).

    [5] Tanabe T, Notomi M, Kuramochi E et al. Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity[J]. Nature Photonics, 1, 49-52(2007).

    [6] Notomi M, Shinya A, Mitsugi S et al. Optical bistable switching action of Si high-Q photonic-crystal nanocavities[J]. Optics Express, 13, 2678-2687(2005).

    [7] Heinze G, Hubrich C, Halfmann T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute[J]. Physical Review Letters, 111, 033601(2013).

    [8] Hsiao Y F, Tsai P J, Chen H S et al. Highly efficient coherent optical memory based on electromagnetically induced transparency[J]. Physical Review Letters, 120, 183602(2018).

    [9] Hosseini M, Sparkes B M, Campbell G et al. High efficiency coherent optical memory with warm rubidium vapour[J]. Nature Communications, 2, 174(2011).

    [10] Wang Y F, Li J F, Zhang S C et al. Efficient quantum memory for single-photon polarization qubits[J]. Nature Photonics, 13, 346-351(2019).

    [11] Afzelius M, Usmani I, Amari A et al. Demonstration of atomic frequency comb memory for light with spin-wave storage[J]. Physical Review Letters, 104, 040503(2010).

    [12] England D G, Bustard P J, Nunn J et al. From photons to phonons and back: A THz optical memory in diamond[J]. Physical Review Letters, 111, 243601(2013).

    [13] Lvovsky A I, Sanders B C, Tittel W. Optical quantum memory[J]. Nature Photonics, 3, 706-714(2009).

    [14] Heshami K, England D G, Humphreys P C et al. Quantum memories: Emerging applications and recent advances[J]. Journal of Modern Optics, 63, 2005-2028(2016).

    [15] Yang T S, Zhou Z Q, Li C F et al. Multimode solid-state quantum memory[J]. Acta Physica Sinica, 68, 030303(2019).

    [16] Dou J P, Li H, Pang X L et al. Research progress of quantum memory[J]. Acta Physica Sinica, 68, 030307(2019).

    [17] Ding D S, Zhou Z Y, Shi B S. A quantum memory for high-dimensional states[J]. Chinese Journal of Quantum Electronics, 31, 442-448(2014).

    [18] Lee H, Chen T, Li J et al. Ultra-low-loss optical delay line on a silicon chip[J]. Nature Communications, 3, 867(2012).

    [19] Sayrin C, Clausen C, Albrecht B et al. Storage of fiber-guided light in a nanofiber-trapped ensemble of cold atoms[J]. Optica, 2, 353-356(2015).

    [20] Gouraud B, Maxein D, Nicolas A et al. Demonstration of a memory for tightly guided light in an optical nanofiber[J]. Physical Review Letters, 114, 180503(2015).

    [21] Corzo N V, Raskop J, Chandra A et al. Waveguide-coupled single collective excitation of atomic arrays[J]. Nature, 566, 359-362(2019).

    [22] Chang D E, Douglas J S, González-Tudela A et al. Colloquium: Quantum matter built from nanoscopic lattices of atoms and photons[J]. Reviews of Modern Physics, 90, 031002(2018).

    [23] Sheremet A S, Petrov M I, Iorsh I V et al. Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations[J]. Reviews of Modern Physics, 95, 015002(2023).

    [24] Sipahigil A, Evans R E, Sukachev D D et al. An integrated diamond nanophotonics platform for quantum-optical networks[J]. Science, 354, 847-850(2016).

    [25] Burek M J, Meuwly C, Evans R E et al. Fiber-coupled diamond quantum nanophotonic interface[J]. Physical Review Applied, 8, 024026(2017).

    [26] Atatüre M, Englund D, Vamivakas N et al. Material platforms for spin-based photonic quantum technologies[J]. Nature Reviews Materials, 3, 38-51(2018).

    [27] Zhou Z Q, Liu C, Li C F et al. Photonic integrated quantum memory in rare-earth doped solids[J]. Laser & Photonics Reviews, 17, 2300257(2023).

    [28] Zhong T, Kindem J M, Miyazono E et al. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals[J]. Nature Communications, 6, 8206(2015).

    [29] Corrielli G, Seri A, Mazzera M et al. Integrated optical memory based on laser-written waveguides[J]. Physical Review Applied, 5, 054013(2016).

    [30] Seri A, Corrielli G, Lago-Rivera D et al. Laser-written integrated platform for quantum storage of heralded single photons[J]. Optica, 5, 934-941(2018).

    [31] Rakonjac J V, Corrielli G, Lago-Rivera D et al. Storage and analysis of light-matter entanglement in a fiber-integrated system[J]. Science Advances, 8, eabn3919(2022).

    [32] Liu C, Zhou Z Q, Zhu T X et al. Reliable coherent optical memory based on a laser-written waveguide[J]. Optica, 7, 192-197(2020).

    [33] Liu D C, Li P Y, Zhu T X et al. On-demand storage of photonic qubits at telecom wavelengths[J]. Physical Review Letters, 129, 210501(2022).

    [34] Zhu T X, Liu C, Jin M et al. On-demand integrated quantum memory for polarization qubits[J]. Physical Review Letters, 128, 180501(2022).

    [35] Li L Q, Kong W J, Chen F. Femtosecond laser-inscribed optical waveguides in dielectric crystals: A concise review and recent advances[J]. Advanced Photonics, 4, 024002(2022).

    [36] Saglamyurek E, Sinclair N, Jin J et al. Broadband waveguide quantum memory for entangled photons[J]. Nature, 469, 512-515(2011).

    [37] Askarani M F, Puigibert M L G, Lutz T et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide[J]. Physical Review Applied, 11, 054056(2019).

    [38] Sinclair N, Oblak D, Saglamyurek E et al. Optical coherence and energy-level properties of a Tm3+-doped LiNbO3 waveguide at subkelvin temperatures[J]. Physical Review B, 103, 134105(2021).

    [39] Saravi S, Pertsch T, Setzpfandt F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics[J]. Advanced Optical Materials, 9, 2100789(2021).

    [40] Zhou Z Q, Chen D L, Jin M et al. A transportable long-lived coherent memory for light pulses[J]. Science Bulletin, 67, 2402-2405(2022).

    [41] Lauritzen B, Timoney N, Gisin N et al. Spectroscopic investigations of Eu3+:Y2SiO5 for quantum memory applications[J]. Physical Review B, 85, 115111(2012).

    [42] Nilsson M, Rippe L, Kröll S et al. Hole-burning techniques for isolation and study of individual hyperfine transitions in inhomogeneously broadened solids demonstrated in Pr3+:Y2SiO5[J]. Physical Review B, 70, 214116(2004).

    [43] Roos I, Mølmer K. Quantum computing with an inhomogeneously broadened ensemble of ions: Suppression of errors from detuning variations by specially adapted pulses and coherent population trapping[J]. Physical Review A, 69, 022321(2004).

    [44] Damon V, Bonarota M, Louchet-Chauvet A et al. Revival of silenced echo and quantum memory for light[J]. New Journal of Physics, 13, 093031(2011).

    [45] Hurlimann M D, Helmer K G, Deswiet T M et al. Spin echoes in a constant gradient and in the presence of simple restriction[J]. Journal of Magnetic Resonance, Series A, 113, 260-264(1995).

    [46] Bennett K M, Schmainda K M, Bennett R et al. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model[J]. Magnetic Resonance in Medicine, 50, 727-734(2003).

    [47] Hall M G, Barrick T R. From diffusion-weighted MRI to anomalous diffusion imaging[J]. Magnetic Resonance in Medicine, 59, 447-455(2008).

    [48] Chen Q F, Troshyn A, Ernsting I et al. Spectrally narrow, long-term stable optical frequency reference based on a Eu3+:Y2SiO5 crystal at cryogenic temperature[J]. Physical Review Letters, 107, 223202(2011).

    Liang ZHENG, Chao LIU, Zongquan ZHOU, Chuanfeng LI. Long⁃term optical memory based on crystal waveguide[J]. Chinese Journal of Quantum Electronics, 2025, 42(2): 246
    Download Citation