• Photonics Research
  • Vol. 9, Issue 2, 252 (2021)
Khant Minn1, Blake Birmingham1, Brian Ko1、2, Ho Wai Howard Lee1、2、3、4、5、*, and Zhenrong Zhang1、6、*
Author Affiliations
  • 1Department of Physics, Baylor University, Waco, Texas 76798, USA
  • 2The Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
  • 3Department of Physics & Astronomy, University of California, Irvine, California 92697, USA
  • 4Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92697, USA
  • 5e-mail: Howardhw.lee@uci.edu
  • 6e-mail: Zhenrong_Zhang@baylor.edu
  • show less
    DOI: 10.1364/PRJ.411583 Cite this Article Set citation alerts
    Khant Minn, Blake Birmingham, Brian Ko, Ho Wai Howard Lee, Zhenrong Zhang. Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing[J]. Photonics Research, 2021, 9(2): 252 Copy Citation Text show less
    References

    [1] R. H. Stolen, H. W. K. Tom. Self-organized phase-matched harmonic generation in optical fibers. Opt. Lett., 12, 585-587(1987).

    [2] N. Granzow, S. P. Stark, M. A. Schmidt, A. Tverjanovich, L. Wondraczek, P. St. J. Russell. Supercontinuum generation in chalcogenide-silica step-index fibers. Opt. Express, 19, 21003-21010(2011).

    [3] C. Caucheteur, T. Guo, J. Albert. Review of plasmonic fiber optic biochemical sensors: improving the limit of detection. Anal. Bioanal. Chem., 407, 3883-3897(2015).

    [4] S. E. Mowbray, A. M. Amiri. A brief overview of medical fiber optic biosensors and techniques in the modification for enhanced sensing ability. Diagnostics, 9, 23(2019).

    [5] M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, Y. Fink. Metal–insulator–semiconductor optoelectronic fibres. Nature, 431, 826-829(2004).

    [6] M. Mivelle, T. S. van Zanten, M. F. Garcia-Parajo. Hybrid photonic antennas for subnanometer multicolor localization and nanoimaging of single molecules. Nano Lett., 14, 4895-4900(2014).

    [7] K. Minn, B. Birmingham, Z. Zhang. New development of nanoscale spectroscopy using scanning probe microscope. J. Vac. Sci. Technol. A, 38, 030801(2020).

    [8] R. W. Heeres, L. P. Kouwenhoven, V. Zwiller. Quantum interference in plasmonic circuits. Nat. Nanotechnol., 8, 719-722(2013).

    [9] X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, M. Liu. Toward high-contrast atomic force microscopy-tip-enhanced Raman spectroscopy imaging: nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett., 19, 100-107(2019).

    [10] S. Berweger, J. M. Atkin, R. L. Olmon, M. B. Raschke. Light on the tip of a needle: plasmonic nanofocusing for spectroscopy on the nanoscale. J. Phys. Chem. Lett., 3, 945-952(2012).

    [11] Z.-K. Zhou, J. Liu, Y. Bao, L. Wu, C. E. Png, X.-H. Wang, C.-W. Qiu. Quantum plasmonics get applied. Prog. Quantum Electron., 65, 1-20(2019).

    [12] H. W. Lee, M. A. Schmidt, H. K. Tyagi, L. P. Sempere, P. St. J. Russell. Polarization-dependent coupling to plasmon modes on submicron gold wire in photonic crystal fiber. Appl. Phys. Lett., 93, 111102(2008).

    [13] X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, L. Tong. Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits. Nano Lett., 9, 4515-4519(2009).

    [14] H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, P. St. J. Russell. Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers. Opt. Express, 19, 12180-12189(2011).

    [15] H. W. Lee, M. A. Schmidt, P. St. J. Russell. Excitation of a nanowire “molecule” in gold-filled photonic crystal fiber. Opt. Lett., 37, 2946-2948(2012).

    [16] X.-W. Chen, V. Sandoghdar, M. Agio. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett., 9, 3756-3761(2009).

    [17] A. Tuniz, M. A. Schmidt. Interfacing optical fibers with plasmonic nanoconcentrators. Nanophotonics, 7, 1279-1298(2018).

    [18] X. Li, W. Li, X. Guo, J. Lou, L. Tong. All-fiber hybrid photon-plasmon circuits: integrating nanowire plasmonics with fiber optics. Opt. Express, 21, 15698-15705(2013).

    [19] S. Kim, N. Yu, X. Ma, Y. Zhu, Q. Liu, M. Liu, R. Yan. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics, 13, 636-643(2019).

    [20] H. G. Frey, F. Keilmann, A. Kriele, R. Guckenberger. Enhancing the resolution of scanning near-field optical microscopy by a metal tip grown on an aperture probe. Appl. Phys. Lett., 81, 5030-5032(2002).

    [21] K. Minn, H. W. Howard Lee, Z. Zhang. Enhanced subwavelength coupling and nano-focusing with optical fiber-plasmonic hybrid probe. Opt. Express, 27, 38098-38108(2019).

    [22] H. W. P. Koops, R. Weiel, D. P. Kern, T. H. Baum. High-resolution electron-beam induced deposition. J. Vac. Sci. Technol. B, 6, 477-481(1988).

    [23] M. Huth, F. Porrati, O. V. Dobrovolskiy. Focused electron beam induced deposition meets materials science. Microelectron. Eng., 185-186, 9-28(2018).

    [24] T. A. Birks, J. C. Knight, P. St. J. Russell. Endlessly single-mode photonic crystal fiber. Opt. Lett., 22, 961-963(1997).

    [25] G. C. Gazzadi, S. Frabboni, C. Menozzi. Suspended nanostructures grown by electron beam-induced deposition of Pt and TEOS precursors. Nanotechnology, 18, 445709(2007).

    [26] N. Silvis-Cividjian, C. W. Hagen, P. Kruit. Spatial resolution limits in electron-beam-induced deposition. J. Appl. Phys., 98, 084905(2005).

    [27] S. Zhang, H. Wei, K. Bao, U. Håkanson, N. J. Halas, P. Nordlander, H. Xu. Chiral surface plasmon polaritons on metallic nanowires. Phys. Rev. Lett., 107, 096801(2011).

    [28] D. Pan, H. Wei, Z. Jia, H. Xu. Mode conversion of propagating surface plasmons in nanophotonic networks induced by structural symmetry breaking. Sci. Rep., 4, 4993(2014).

    [29] D. E. Chang, A. S. Sørensen, P. R. Hemmer, M. D. Lukin. Strong coupling of single emitters to surface plasmons. Phys. Rev. B, 76, 035420(2007).

    [30] N. T. Thu, K. Tanaka, M. Tanaka, D. N. Chien. Superfocusing of surface plasmon polaritons by metal-coated dielectric probe of tilted conical shape. J. Opt. Soc. Am. A, 30, 1113-1118(2013).

    [31] M. I. Stockman. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett., 93, 137404(2004).

    [32] . AFM probes and accessories(2020).

    [33] C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, M. B. Raschke. Near-field localization in plasmonic superfocusing: a nanoemitter on a tip. Nano Lett., 10, 592-596(2010).

    [34] A. Tuniz, M. Chemnitz, J. Dellith, S. Weidlich, M. A. Schmidt. Hybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiber. Nano Lett., 17, 631-637(2017).

    [35] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [36] P. B. Johnson, R. W. Christy. Optical constants of noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    Khant Minn, Blake Birmingham, Brian Ko, Ho Wai Howard Lee, Zhenrong Zhang. Interfacing photonic crystal fiber with a metallic nanoantenna for enhanced light nanofocusing[J]. Photonics Research, 2021, 9(2): 252
    Download Citation