• Infrared and Laser Engineering
  • Vol. 52, Issue 5, 20230228 (2023)
Yadong Jiao, Zhixu Jia, Xiaohui Guo, Chengyun Zhang, Weiping Qin, and Guanshi Qin
Author Affiliations
  • State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
  • show less
    DOI: 10.3788/IRLA20230228 Cite this Article
    Yadong Jiao, Zhixu Jia, Xiaohui Guo, Chengyun Zhang, Weiping Qin, Guanshi Qin. Progress on mid-infrared glass optical fiber materials and Raman laser source (invited)[J]. Infrared and Laser Engineering, 2023, 52(5): 20230228 Copy Citation Text show less
    References

    [1] S A Diddams, L Hollberg, V Mbele. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature, 445, 627-630(2019).

    [2] J Shi, T T W Wong, Y He, et al. High-resolution, high-contrast mid-infrared imaging of fresh biological samples with ultraviolet-localized photoacoustic microscopy. Nature Photonics, 13, 609-615(2019).

    [3] L G Hwa, Y R Chang, W C Chao. Infrared spectra of lanthanum gallogermanate glasses. Materials Chemistry and Physics, 85, 158-162(2004).

    [4] A D Stuart. Some applications of infrared optical sensing. Sensors and Actuators B: Chemical, 11, 185-193(1993).

    [5] J Mandon, G Guelachvili, N Picqué. Fourier transform spectroscopy with a laser frequency comb. Nature Photonics, 3, 99-102(2009).

    [6] Z Y Lin, X Y Jia, C L Wang, et al. Ionization suppression of diatomic molecules in an intense midinfrared laser field. Physical Review Letters, 108, 223001(2012).

    [7] B M Walsh, H R Lee, N P Barnes. Mid infrared lasers for remote sensing applications. Journal of Luminescence, 169, 400-405(2016).

    [8] Taccheo S. Fiber lasers f medical diagnostics treatments: State of the art, challenges future perspectives [C]Proceedings of SPIE, 2017, 10058: 1005808.

    [9] Zhixu Jia, Xiaohui Guo, Yadong Jiao, . Progress on mid-infrared Raman lasers based on special glass fibers (invited). Chinese Journal of Lasers, 49, 0101004(2022).

    [10] Pu Zhou, Tianfu Yao, Chenchen Fan, . 50th anniversary of Raman fiber laser: History, progress and prospect (invited). Infrared and Laser Engineering, 51, 20220015(2022).

    [11] M E Lines. The search for very low loss fiber-optic materials. Science, 226, 663-668(1984).

    [12] Agrawal G P. Nonlinearfiber Optics[M]. New Yk: Academic Press, 2013.

    [13] Y K Glick, Y Shamir, M Aviel, et al. 1.2 kW clad pumped Raman all-passive-fiber laser with brightness echancement. Optics Letters, 43, 4755-475(2018).

    [14] Y Z Chen, T F Yao, L J Huang, et al. 2 kW high-efficiency Raman fiber amplifier based on passive fiber with dynamic analysis on beam cleanup and fluctuation. Optics Express, 28, 3495-3504(2020).

    [15] J X Song, P F Ma, S Ren, et al. 2 kW narrow-linewidth Yb-Raman fiber amplifier. Optics Letters, 46, 2404-2407(2021).

    [16] V R Supradeepa, J W Nicholson. Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers. Optics Letters, 38, 2538-2541(2013).

    [17] L Zhang, J Dong, Y Feng. High-power and high-order random Raman fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [18] V Fortin, M Bernier, D Faucher, et al. 3.7 W fluoride glass Raman fiber laser operating at 2231 nm. Optics Express, 20, 19412-19419(2012).

    [19] Y Tang, L G Wright, K Charan, et al. Generation of intense 100 fs solitons tunable from 2 to 4.3 µm in fluoride fiber. Optica, 3, 948-951(2016).

    [20] M Bernier, V Fortin, M El-amraoui, et al. 3.77 µm fiber laser based on cascaded Raman gain in Al chalcogenide glass fiber. Optics Letters, 39, 2052-2055(2014).

    [21] G Zhu, L Geng, X Zhu, et al. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber. Optics Express, 23, 7559-7573(2015).

    [22] E A Anashkina, V V Dorofeev, S A Skobelev, et al. Microstructured fibers based on tellurite glass for nonlinear conversion of mid-IR ultrashort optical pulses. Photonics, 7, 51(2020).

    [23] Y W Hou, Q Wu, F Liu, et al. Numerical demonstration of the soliton self-frequency shift process beyond 8 µm in a tellurite-chalcogenide fiber cascaded structure. IEEE Photonics Journal, 14, 1540412(2022).

    [24] P F Chang, H Y Luo, Q Wu, et al. Tunable mid-infrared Raman soliton generation from 2.80 to 3.17 µm based on fluorotellurite fiber. IEEE Photonics Technology Letters, 34, 1183-1186(2022).

    [25] Ruite Liu, Yiguang Jiang, Longfei Zhang, . Mid-Infrared fluoride glass fibers – a short review. Journal of the Chinese Ceramic Society, 50, 1085-1099(2022).

    [26] Seed M. Heavy metal fluide glass fibers their applications [C]Proc of SPIE, 2011, 8307: 83070N.

    [27] S J Jia, Z X Jia, C F Yao, et al. 2875 nm lasing from Ho3+-doped fluoroindate glass fibers. IEEE Photonics Technology Letters, 30, 323-326(2018).

    [28] F Maes, V Fortin, S Poulain, et al. Room temperature fiber laser at 3.92 µm. Optica, 5, 761-764(2018).

    [29] M R Majewski, R I Woodward, J Y Carreé, et al. Emission beyond 4 µm and mid-infrared a dysprosium-doped indium fluoride (InF3) fiber. Optics Letters, 43, 1926-1929(2018).

    [30] S J Jia, Z X Jia, C F Yao, et al. Ho3+ doped fluoroaluminate glass fibers for 2.9 µm lasing. Laser Physics, 28, 015802(2018).

    [31] H Y He, Z X Jia, S J Jia, et al. Ho3+/Pr3+ co-doped AlF3 based glass fibers for efficient ~2.9 µm lasers. IEEE Photonics Technology Letters, 32, 1489-1492(2020).

    [32] S J Jia, C Z Li, Z P Zhao, et al. Er3+-doped ZnF2-BaF2-SrF2-YF3 fluoride glasses for 2.7 µm laser applications. Materials Letters, 227, 97-99(2018).

    [33] H Y He, S J Jia, Y Ohishi, et al. Efficient ~4 µm emission from Pr3+/Yb3+ co-doped fluoroindate glass. Optics Letters, 46, 5607-5610(2021).

    [34] Jiang Yiguang, Guan Feng, Yuan Xinqiang, et al. Fluide infrared optical fiber [C]Abstract Collection of the Second National Optoelectronic Materials Devices Symposium, China Rare Earth Society, 2021. (in Chinese)

    [35] Jiang Yiguang, Yuan Xingqiang, Zhang long. Research on the preparation of infrared perfluide glass fiber [C]The 10th China Functional Glass Symposium New Optoelectronics Abstracts of International Fum on Materials, Chinese Ceramic Society, 2018. (in Chinese)

    [36] S B Wang, J Q Zhang, N N Xu, et al. 2.9 µm lasing from a Ho3+/Pr3+ co-doped AlF3-based glass fiber pumped by a 1150 nm laser. Optics Letters, 45, 1216-1219(2020).

    [37] N N Xu, Z Y Yang, J Q Zhang, et al. Direct femtosecond laser inscription of Bragg gratings in Ho3+/Pr3+ co-doped AlF3-based glass fibers for a 2.86 µm laser. Optics Letters, 47, 597-600(2022).

    [38] J Q Zhang, H Y Zhao, R C Wang, et al. 3.9 µm emission in Nd3+ sensitized Ho3+ doped fluoroaluminate glasses. Journal of Alloys and Compounds, 46, 2031-2034(2021).

    [39] J Zhang, R C Wang, M Liu, et al. ZnF2-modified AlF3-based fluoride glasses with enhanced mid-infrared 3.5 μm emission. Journal of the American Ceramic Society, 105, 4691-4698(2022).

    [40] A Saïssy, J Botineau, L Macon. Diffusion Raman dans une fibre optique en verre fluoré. Journal de Physique Lettres, 46, 289-294(1985).

    [41] R M Almeida, J D Mackenzie. Vibrational spectra and structure of fluorozirconate glasses. Journal of Chemical Physics, 74, 5954-5961(1981).

    [42] Y Durteste, M Monerie, P Lamouler. Raman amplification in fluoride glass fibres. Electronics Letters, 21, 723-724(1985).

    [43] R M Almeida, J C Pereira, Y Messaddeq, et al. Vibrational spectra and structure of fluoroindate glasses. Journal of Non-Crystalline Solids, 161, 105-108(1993).

    [44] T Cheng, W Gao, X Xue, et al. Fourth-order cascaded Raman shift in a birefringence ZBLAN fluoride fiber. Optical Fiber Technology, 36, 245-248(2017).

    [45] V Fortin, M Bernier, J Carrier, et al. Fluoride glass Raman fiber laser at 2185 nm. Optics Letters, 36, 4152-4154(2011).

    [46] S Duval, J C Gauthier, L R Robichaud, et al. Watt-level fiber-based femtosecond laser source tunable from 2.8 to 3.6 µm. Optics Letters, 41, 5294-5297(2016).

    [47] N Nagl, K F Mak, Q Wang, et al. Efficient femtosecond mid-infrared generation based on a Cr: ZnS oscillator and step-index fluoride fibers. Optics Letters, 44, 2390-2393(2019).

    [48] I Tiliouine, H Delauaye, G Granger, et al. Fiber-based source of 500 kW mid-infrared solitons. Optics Letters, 46, 5890-5893(2021).

    [49] X S Zhu, N Peyghanbarian. High-power ZBLAN glass fiber laser: review and prospect. Advances in OptoElectronics, 1-23(2010).

    [50] L Y Yang, Y Li, B Zhang, et al. 30-W supercontinuum generation based on ZBLAN fiber in an all-fiber configuration. Photonics Research, 7, 1061-1065(2019).

    [51] R E Slusher, L B Shaw, J Hodelin. Large Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. Journal of the Optical Society of America B, 21, 1146-1155(2004).

    [52] Cactive. IR fibers [EBOL]. [20230211]. https:www.cactive.com.

    [53] IRflex. Products [EBOL]. [20230211]. https:irflex.comproducts.

    [54] Art photonics. Chalcogenide IR fibers [EBOL]. [20230211]. https:artphotonics.comproductchalcogenideirfibers.

    [55] H T Guo, Y T Xu, H Y Chen, et al. Near- and Mid-infrared emissions of Dy3+ doped and Dy3+/Tm3+ co-doped lead cesium iodide modified chalcohalide glass. Journal of Luminescence, 148, 10-17(2014).

    [56] Haitao Guo, Jian Cui, Yantan Xu, . Progress in preparation and appllications of low-loss chalcogenide infrared fibers. Laser and Optoelectronics Progress, 56, 170606(2019).

    [57] Shixun Dai, Min Wang, Yingying Wang, . Review of mid-infrared supercontinuum spectrum generation based on chalcogenide glass fibers. Laser and Optoelectronics Progress, 57, 071603(2020).

    [58] Xian Feng, Zhiyong Yang, Jindan Shi. Progress in chalcogenide glass photonic crystal fibers with ultra-large mode area (invited). Chinese Journal of Lasers, 49, 0101006(2022).

    [59] Yantao Xu, Haitao Guo, Xingtao Yan, . Preparation and applications of low-loss As-S chalcogenide glass fibers. Journal of Inorganic Materials, 30, 97-101(2015).

    [60] Yantao Xu, Haitao Guo, Min Lu, . Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers. Infrared and Laser Engineering, 44, 182-187(2015).

    [61] I D Aggarwal, J S Sanghera. Development and applications of chalcogenide glass optical fibers at NIL. Journal of Optolectronics and Advanced Materials, 4, 665-678(2002).

    [62] M Duhant, W Renard, G Canat, et al. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm. Optics Letters, 36, 2859-2861(2011).

    [63] T L Cheng, S G Li, X Yan, et al. Mid-infrared cascaded stimulated Raman scattering up to eight orders in As-S optical fiber. Optics Express, 26, 12007-12015(2018).

    [64] F Wang, X Zhou, X N Zhang, et al. Mid-infrare cascaded stimulated Raman scattering and flat supercontinuum generation in an As-S optical fiber pump at 2 µm. Applied Optics, 60, 6351-6356(2021).

    [65] S D Jackson, G A Sánchez. Chalcogenide glass Raman fiber laser. Applied Physics Letters, 88, 221106(2006).

    [66] M Bernier, M El-amraoui, J F Couillard, et al. Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm. Optics Letters, 37, 3900-3902(2012).

    [67] M Bernier, V Fortin, N Caron, et al. Mid-infrared chalcogenide glass Raman fiber laser. Optics Letters, 38, 127-129(2013).

    [68] X F Peng, P Q Zhang, X S Wang, et al. Modeling and simulation of a mid-IR 4.3 µm Raman laser in chalcogenide glass fibers. OSA Continuum, 2, 2281-2292(2019).

    [69] T L Cheng, R Usaki, Z C Duan, et al. Soliton self-frequency shift and third-harmonic generation in a four-hole As2S5 microstructured optical fiber. Optics Express, 22, 3740-3746(2014).

    [70] T L Cheng, Y Kanou, K Asano, et al. Soliton self-frequency shift and dispersive wave in a hybrid four-hole AsSe2-As2S5 microstructured optical fiber. Applied Physics Letters, 104, 121911(2014).

    [71] Rui Wan, Liqing Yang, Weirong Huo, . Research progress of mid-infrared tellurite glass and optical fibers (Invited). Bulletin of the Chinese Ceramic Society, 41, 2589-2603(2022).

    [72] Wei Liu, Xue Zhou, Fan Zhang, . Progress on tellurite glass and its optical fiber in sensing application. Bulletin of the Chinese Ceramic Society, 50, 2326-2337(2022).

    [73] X Feng, J Shi, M Segura, et al. Halo-tellurite glass fiber with low OH content for 2-5 µm mid-infrared nonlinear applications. Optics Express, 21, 18949-18954(2013).

    [74] C F Yao, Z X Jia, Z R Li, et al. High-power mid-infrared supercontinuum laser source using fluorotellurite fiber. Optica, 5, 1264-1270(2018).

    [75] J J Wang, Z Z Jia, C Z Zhang, et al. Thulium-doped fluorotellurite glass fibers for broadband S-band amplifiers. Optics Letters, 47, 1964-1967(2022).

    [76] S Kedenburg, C Strutynski, B Kibler, et al. High repetition rate mid-infrared supercontunuum generation from 1.3 to 5.3 µm in robust step-index tellurite fibers. Journal of the Optical Society of America B, 34, 601-607(2017).

    [77] J Hrabovsky, F Desevedavy, L Strizik, et al. Glass formation and properties of the TeO2-ZnO-BaO tellurite optical galsses. Journal of Non-Crystalline Solids, 582, 121445(2022).

    [78] T Sekiya, N Mochida, A Ohtsuka, et al. Raman spectra of BO3/2-TeO2 glasses. Journal of Non-Crystalline Solids, 151, 222-228(1992).

    [79] G S Qin, R Jose, Y Ohishi. Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation. Journal of Applied Physics, 101, 093109(2007).

    [80] M S Liao, X Yan, W Q Gao, et al. Five-order SRSs and supercontinuum generation from a tapered tellurite microstructured fiber with longitudinally varying dispersion. Optics Express, 19, 15389-15396(2011).

    [81] T L Cheng, X Y Chen, X Yan, et al. Mid-Infrared stimulated raman scattering and four-wave mixing in a tellurite microstructed optical fiber. IEEE Photonics Technology Letters, 34, 239-242(2022).

    [82] G S Qin, M S Liao, T Suzuki, et al. Widely tunable ring-cavity tellurite fiber Raman laser. Optics Letters, 33, 2014-2016(2008).

    [83] L Liu, Q J Tian, M S Liao, et al. All-optical control of group velocity dispersion in tellurite photonic crystal fibers. Optics Letters, 37, 5124-5126(2012).

    [84] W J Bi, X Li, Z J Xing, et al. Wavelength conversion through soliton self-frequency shift in tellurite microstructured fiber with picosecond pump pulse. Journal of Applied Physics, 119, 043102(2016).

    [85] L Zhang, T L Cheng, D H Deng, et al. Tunable soliton generation in a birefringent tellurite microstructured optical fiber. IEEE Photonics Technology Letters, 27, 1547-1549(2015).

    [86] M Y Koptev, E A Anashkina, A V Andrianov, et al. Widely tunable mid-infrared fiber laser source based on soliton self-frequency shift in microstructured tellurite fiber. Optics Letters, 40, 4094-4097(2015).

    [87] Y Yao, F Yang, S X Dai, et al. Mid-infrared femtosecond laser-induced damage in TeO2-BaF2-Y2O3 fluorotellurite glass. Optical Materials Express, 12, 1670-1682(2022).

    [88] X H Guo, Z X Jia, Y D Jiao, et al. 25.8 W all-fiber mid-infrared supercontinuum light sources based on fluorotellurite fibers. IEEE Photonics Technology Letters, 34, 367-370(2022).

    [89] Y D Jiao, Z X Jia, X H Guo, et al. Third-order cascaded Raman shift in all-solid fluorotellurite fiber pumped at 1550 nm. Optics Letters, 47, 690-693(2022).

    [90] Y D Jiao, F C Meng, Z X Jia, et al. Cascaded Raman amplifiers based on fluorotellurite fibers. Optical Materials Express, 12, 2309-2317(2022).

    [91] Z R Li, N Li, C F Yao, et al. Tunable mid-infrared Raman soliton generation from 1.96 to 2.82 µm in an all-solid fluorotellurite fiber. AIP Advances, 8, 115001(2018).

    [92] X H Guo, F C Meng, Z X Jia, et al. Dispersive wave generation at 4 µm in a dispersion-engineered fluorotellurite fiber pumped by a 1.98 µm femtosecond fiber laser. Optical Materials Express, 12, 634-642(2022).

    [93] Z R Li, C F Yao, Z X Jia, et al. Broadband supercontinuum generation from 600 to 5 400 nm in a tapered fluorotellurite fiber pumped by a 2 010 nm femtosecond fiber laser. Applied Physics Letters, 115, 091103(2019).

    CLP Journals

    [1] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    Yadong Jiao, Zhixu Jia, Xiaohui Guo, Chengyun Zhang, Weiping Qin, Guanshi Qin. Progress on mid-infrared glass optical fiber materials and Raman laser source (invited)[J]. Infrared and Laser Engineering, 2023, 52(5): 20230228
    Download Citation