• Chinese Journal of Lasers
  • Vol. 49, Issue 5, 0507017 (2022)
Kang Shen1、2, Songde Liu1、2, Junhui Shi3, and Chao Tian1、2、*
Author Affiliations
  • 1School of Engineering Science, University of Science and Technology of China, Hefei, Anhui 230026, China
  • 2Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Hefei, Anhui 230026, China
  • 3Zhejiang Lab, Hangzhou, Zhejiang 311121, China
  • show less
    DOI: 10.3788/CJL202249.0507017 Cite this Article Set citation alerts
    Kang Shen, Songde Liu, Junhui Shi, Chao Tian. Dual-Domain Neural Network for Sparse-View Photoacoustic Image Reconstruction[J]. Chinese Journal of Lasers, 2022, 49(5): 0507017 Copy Citation Text show less
    References

    [1] Wang L V, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs[J]. Science, 335, 1458-1462(2012).

    [2] Feng T, Zhu Y H, Morris R et al. Functional photoacoustic and ultrasonic assessment of osteoporosis: a clinical feasibility study[J]. BME Frontiers, 35-49(2020).

    [3] Zhang G P, Deng L J, Bai Y et al. Recent advances in photoacoustic tomography based on circular array transducer[J]. Laser & Optoelectronics Progress, 57, 120004(2020).

    [4] Liu Q, Jin T, Chen Q et al. Research progress of miniaturized photoacoustic imaging technology in biomedical field[J]. Chinese Journal of Lasers, 47, 0207019(2020).

    [5] Wang T, Liu W, Tian C. Combating acoustic heterogeneity in photoacoustic computed tomography: a review[J]. Journal of Innovative Optical Health Sciences, 13, 2030007(2020).

    [6] Gong F, Cheng L, Liu Z. Application of nanoprobes in photoacoustic cancer imaging[J]. Laser & Optoelectronics Progress, 57, 180004(2020).

    [7] Yu J W, Wang X H, Feng J C et al. Antimonene nanoflakes as a photoacoustic imaging contrast agent for tumor in vivo imaging[J]. Chinese Journal of Lasers, 47, 0207033(2020).

    [8] Huang L, Cai W, Zhao Y et al. In vivo tumor detection with combined MR-photoacoustic-thermoacoustic imaging[J]. Journal of Innovative Optical Health Sciences, 9, 1650015(2016).

    [9] Jo J, Tian C, Xu G et al. Photoacoustic tomography for human musculoskeletal imaging and inflammatory arthritis detection[J]. Photoacoustics, 12, 82-89(2018).

    [10] Liu S D, Wang H, Zhang C X et al. In vivo photoacoustic sentinel lymph node imaging using clinically-approved carbon nanoparticles[J]. IEEE Transactions on Bio-Medical Engineering, 67, 2033-2042(2020).

    [11] Wang H, Liu S D, Wang T et al. Three-dimensional interventional photoacoustic imaging for biopsy needle guidance with a linear array transducer[J]. Journal of Biophotonics, 12, e201900212(2019).

    [12] Köker T, Tang N, Tian C et al. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds[J]. Nature Communications, 9, 607(2018).

    [13] Tian C, Qian W, Shao X et al. Plasmonic nanoparticles with quantitatively controlled bioconjugation for photoacoustic imaging of live cancer cells[J]. Advanced Science, 3, 1600237(2016).

    [14] Bell A G. On the production and reproduction of sound by light[J]. American Journal of Science, 305-324(1880).

    [15] Xu M H, Wang L V. Universal back-projection algorithm for photoacoustic computed tomography[J]. Physical Review E, 71, 016706(2005).

    [16] Finch D, Patch S K. Determining a function from its mean values over a family of spheres[J]. SIAM Journal on Mathematical Analysis, 35, 1213-1240(2004).

    [17] Deng K X, Cui M X, Zuo H Z et al. Speed-of-sound heterogeneity compensation method in photoacoustic computed tomographic image reconstruction[J]. Chinese Journal of Lasers, 48, 1507001(2021).

    [18] Tian C, Pei M L, Shen K et al. Impact of system factors on the performance of photoacoustic tomography scanners[J]. Physical Review Applied, 13, 014001(2020).

    [19] Shen K, Liu S D, Feng T et al. Negativity artifacts in back-projection based photoacoustic tomography[J]. Journal of Physics D, 54, 074001(2021).

    [20] Tian C, Zhang C X, Zhang H R et al. Spatial resolution in photoacoustic computed tomography[J]. Reports on Progress in Physics, 84, 036701(2021).

    [21] Cai C J, Wang X H, Si K et al. Streak artifact suppression in photoacoustic computed tomography using adaptive back projection[J]. Biomedical Optics Express, 10, 4803-4814(2019).

    [22] Provost J, Lesage F. The application of compressed sensing for photo-acoustic tomography[J]. IEEE Transactions on Medical Imaging, 28, 585-594(2009).

    [23] Zhang Y, Wang Y Y, Zhang C. Total variation based gradient descent algorithm for sparse-view photoacoustic image reconstruction[J]. Ultrasonics, 52, 1046-1055(2012).

    [24] Wang K, Su R, Oraevsky A A et al. Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography[J]. Physics in Medicine and Biology, 57, 5399-5423(2012).

    [25] Voulodimos A, Doulamis N, Doulamis A et al. Deep learning for computer vision: a brief review[J]. Computational Intelligence and Neuroscience, 2018, 7068349(2018).

    [26] Wang G, Ye J C, Mueller K et al. Image reconstruction is a new frontier of machine learning[J]. IEEE Transactions on Medical Imaging, 37, 1289-1296(2018).

    [27] Wang G, Ye J C, de Man B. Deep learning for tomographic image reconstruction[J]. Nature Machine Intelligence, 2, 737-748(2020).

    [28] McLeavy C M, Chunara M H, Gravell R J et al. The future of CT: deep learning reconstruction[J]. Clinical Radiology, 76, 407-415(2021).

    [29] Ghodrati V, Shao J X, Bydder M et al. MR image reconstruction using deep learning: evaluation of network structure and loss functions[J]. Quantitative Imaging in Medicine and Surgery, 9, 1516-1527(2019).

    [30] Liang D, Cheng J, Ke Z W et al. Deep magnetic resonance image reconstruction: inverse problems meet neural networks[J]. IEEE Signal Processing Magazine, 37, 141-151(2020).

    [31] Gröhl J, Schellenberg M, Dreher K et al. Deep learning for biomedical photoacoustic imaging: a review[J]. Photoacoustics, 22, 100241(2021).

    [32] Hauptmann A, Cox B T. Deep learning in photoacoustic tomography: current approaches and future directions[J]. Journal of Biomedical Optics, 25, 112903(2020).

    [33] Yang C C, Lan H R, Gao F et al. Review of deep learning for photoacoustic imaging[J]. Photoacoustics, 21, 100215(2021).

    [34] Lan H R, Jiang D H, Yang C C et al. Y-Net: hybrid deep learning image reconstruction for photoacoustic tomography in vivo[J]. Photoacoustics, 20, 100197(2020).

    [35] Kim M W, Jeng G S, Pelivanov I et al. Deep-learning image reconstruction for real-time photoacoustic system[J]. IEEE Transactions on Medical Imaging, 39, 3379-3390(2020).

    [36] Hauptmann A, Lucka F, Betcke M et al. Model-based learning for accelerated, limited-view 3-D photoacoustic tomography[J]. IEEE Transactions on Medical Imaging, 37, 1382-1393(2018).

    [37] Antholzer S, Haltmeier M, Schwab J. Deep learning for photoacoustic tomography from sparse data[J]. Inverse Problems in Science and Engineering, 27, 987-1005(2019).

    [38] Davoudi N, Deán-Ben X L, Razansky D. Deep learning optoacoustic tomography with sparse data[J]. Nature Machine Intelligence, 1, 453-460(2019).

    [39] Guan S, Khan A A, Sikdar S et al. Fully dense UNet for 2-D sparse photoacoustic tomography artifact removal[J]. IEEE Journal of Biomedical and Health Informatics, 24, 568-576(2020).

    [40] Feng J C, Deng J G, Li Z et al. End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging[J]. Biomedical Optics Express, 11, 5321-5340(2020).

    [41] Tong T, Huang W H, Wang K et al. Domain transform network for photoacoustic tomography from limited-view and sparsely sampled data[J]. Photoacoustics, 19, 100190(2020).

    [42] Davoudi N, Lafci B, Özbek A et al. Deep learning of image-and time-domain data enhances the visibility of structures in optoacoustic tomography[J]. Optics Letters, 46, 3029-3032(2021).

    [43] Boink Y E, Manohar S, Brune C. A partially-learned algorithm for joint photo-acoustic reconstruction and segmentation[J]. IEEE Transactions on Medical Imaging, 39, 129-139(2020).

    [44] Li H S, Schwab J, Antholzer S et al. NETT: solving inverse problems with deep neural networks[J]. Inverse Problems, 36, 065005(2020).

    [45] Wang W, Xia X G, He C J et al. A deep network for sinogram and CT image reconstruction[EB/OL]. https://arxiv.org/abs/2001.07150

    [46] Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation[M]. Navab N, Hornegger J, Wells W M, et al. Medical image computing and computer assisted intervention-MICCAI 2015. Lecture notes in computer science, 9351, 234-241(2015).

    [47] Haltmeier M, Scherzer O, Burgholzer P et al. Thermoacoustic tomography and the circular Radon transform: exact inversion formula[J]. Mathematical Models and Methods in Applied Sciences, 17, 635-655(2007).

    [48] Staal J, Abràmoff M D, Niemeijer M et al. Ridge-based vessel segmentation in color images of the retina[J]. IEEE Transactions on Medical Imaging, 23, 501-509(2004).

    [49] Treeby B E, Cox B T. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields[J]. Journal of Biomedical Optics, 15, 021314(2010).

    Kang Shen, Songde Liu, Junhui Shi, Chao Tian. Dual-Domain Neural Network for Sparse-View Photoacoustic Image Reconstruction[J]. Chinese Journal of Lasers, 2022, 49(5): 0507017
    Download Citation