• Laser & Optoelectronics Progress
  • Vol. 57, Issue 7, 071403 (2020)
Zhenxing He1、2, Peng Zhang1、2、*, Di Wu1、2, Kexuan Han1、3, Xiaoyan Li1, and Quanli Du1
Author Affiliations
  • 1National and Local Joint Engineering Research Center of Space Optoelectronics Technology, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 2College of Optoelectronics Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • 3College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP57.071403 Cite this Article Set citation alerts
    Zhenxing He, Peng Zhang, Di Wu, Kexuan Han, Xiaoyan Li, Quanli Du. 1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403 Copy Citation Text show less
    References

    [1] Sharma U, Chang E W, Yun S H. Long-wavelength optical coherence tomography at 1.7 μm for enhanced imaging depth[J]. Optics Express, 16, 19712-19723(2008).

    [2] Mingareev I, Weirauch F, Olowinsky A et al. Welding of polymers using a 2 μm thulium fiber laser[J]. Optics & Laser Technology, 44, 2095-2099(2012).

    [3] Quimby R S, Shaw L B, Sanghera J S et al. Modeling of cascade lasing in Dy: chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 20, 123-125(2008).

    [4] Maeda Y, Yamada M, Endo T et al. 1700 nm ASE light source and its application to mid-infrared spectroscopy. [C]∥19th Optoelectronics and Communications Conference (OECC) and the 39th Australian Conference on Optical Fibre Technology (ACOFT). Engineers Australia, 410(2014).

    [5] Nishizawa N, Kawagoe H, Yamanaka M et al. Wavelength dependence of ultrahigh-resolution optical coherence tomography using supercontinuum for biomedical imaging[J]. IEEE Journal of Selected Topics in Quantum Electronics, 25, 1-15(2019).

    [6] Bajraszewski T, Wojtkowski M, Szkulmowski M et al. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 16, 4163-4176(2008).

    [7] Jung E J, Park J S, Jeong M Y et al. Spectrally-sampled OCT for sensitivity improvement from limited optical power[J]. Optics Express, 16, 17457-17467(2008).

    [8] Agger S, Povlsen J H, Varming P. Single-frequency thulium-doped distributed-feedback fiber laser[J]. Optics Letters, 29, 1503-1505(2004).

    [9] Khegai A M, Melkumov M A, Riumkin K E et al. Mode-locked bismuth fiber laser operating at 1.7 μm based on NALM. [C]∥Laser Congress 2017 (ASSL, LAC), Nagoya, Aichi. Washington, D.C.: OSA, JTu2A, 20(2017).

    [10] Casula R, Penttinen J P et al. Cascaded crystalline Raman lasers for extended wavelength coverage: continuous-wave, third-Stokes operation[J]. Optica, 5, 1406-1413(2018).

    [11] Liu J, Shen D Y, Huang H T et al. High-power and highly efficient operation of wavelength-tunable Raman fiber lasers based on volume Bragg gratings[J]. Optics Express, 22, 6605(2014).

    [12] Zhang L, Jiang H W, Yang X Z et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 7, 42611(2017).

    [13] Zhang L, Dong J Y, Feng Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-6(2018).

    [14] Dong J Y, Zhang L, Jiang H W et al. High order cascaded Raman random fiber laser with high spectral purity[J]. Optics Express, 26, 5275-5280(2018).

    [15] Wu D, Zhang P, Li X Y et al. Broadband light source at 1.7 μm based on cascaded-modulator pumping[J]. Chinese Journal of Lasers, 46, 0506003(2019).

    [16] Du Q L, Zhang P, Wu D et al. Raman gain spectrum in 1.7 μm band pumped by multimode laser[J]. Laser & Optoelectronics Progress, 54, 121405(2017).

    [17] Kuang Q Q, Zhan L, Gu Z C et al. High-energy passively mode-locked Raman fiber laser pumped by a CW multimode laser[J]. Journal of Lightwave Technology, 33, 391-395(2015).

    [18] Agrawal G[M]. Nonlinear fiber optics, 205-208(2014).

    [19] Chang C H, Peng P C, Shiu R K et al. Multiwavelength laser with adjustable ultranarrow wavelength spacing[J]. IEEE Photonics Journal, 8, 1-7(2016).

    [20] Jin P X, Lu H D, Yin Q W et al. Expanding continuous tuning range of a CW single-frequency laser by combining an intracavity etalon with a nonlinear loss[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 1-5(2018).

    [21] Feng S C, Ren W H, Chen M Y et al. Multi-wavelength fiber laser employing twin-core fiber filter and nonlinear polarization rotation[J]. Chinese Journal of Lasers, 41, 0605006(2014).

    [22] Gu J B, Zhu F N, Liu L et al. 1550 nm laser source with narrow linewidth and high tuning bandwidth[J]. Chinese Journal of Lasers, 46, 0901003(2019).

    [23] Zhu X J, Geng J, Zhang G A et al. Tunable double pulse dissipative solitons Yb-doped fiber laser based on sagnac loop[J]. Acta Optica Sinica, 39, 0414002(2019).

    [24] Dong P, Gui L L, Xiao X S et al. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 282, 3007-3011(2009).

    [25] Takushima Y. High average power, depolarized super-continuum generation using a 1.55 μm ASE noise source[J]. Optics Express, 13, 5871-5877(2005).

    [26] Smith R G. Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering[J]. Applied Optics, 11, 2489-2494(1972).

    [27] Fang X J, Claus R O. Polarization-independent all-fiber wavelength-division multiplexer based on a Sagnac interferometer[J]. Optics Letters, 20, 2146-2148(1995).

    [28] Kim R K, Han Y G. Switchable multiple lasing oscillations in an erbium-doped fiber ring laser using a single stage of a Sagnac loop mirror[J]. Applied Physics B, 103, 813-818(2011).

    Zhenxing He, Peng Zhang, Di Wu, Kexuan Han, Xiaoyan Li, Quanli Du. 1.7 μm Tunable Multi-Wavelength Raman Fiber Laser Based on Amplified Spontaneous Emission Pump[J]. Laser & Optoelectronics Progress, 2020, 57(7): 071403
    Download Citation