• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823012 (2021)
Lingling Qiao1, Min Wang2, Rongbo Wu1、3, Zhiwei Fang2, Jintian Lin1, Wei Chu2, and Ya Cheng1、2、*
Author Affiliations
  • 1State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • 2Extreme Optoelectromechanics Laboratory, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/AOS202141.0823012 Cite this Article Set citation alerts
    Lingling Qiao, Min Wang, Rongbo Wu, Zhiwei Fang, Jintian Lin, Wei Chu, Ya Cheng. Ultra-Low Loss Lithium Niobate Photonics[J]. Acta Optica Sinica, 2021, 41(8): 0823012 Copy Citation Text show less
    References

    [1] Miller S E. Integrated optics: an introduction[J]. The Bell System Technical Journal, 48, 2059-2069(1969).

    [2] Takahashi H. Planar lightwave circuit devices for optical communication: present and future[J]. Proceedings of the SPIE, 5246, 520-531(2003).

    [3] Bogaerts W, Wiaux V, Taillaert D et al. Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography[J]. IEEE Journal of Selected Topics in Quantum Electronics, 8, 928-934(2002).

    [4] Bogaerts W, Baets R, Dumon P et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology[J]. Journal of Lightwave Technology, 23, 401-412(2005).

    [5] Wang J, Paesani S, Ding Y et al. Multidimensional quantum entanglement with large-scale integrated optics[J]. Science, 360, 285-291(2018).

    [6] Politi A, Cryan M J, Rarity J G et al. Silica-on-silicon waveguide quantum circuits[J]. Science, 320, 646-649(2008).

    [7] Meany T, Gräfe M, Heilmann R et al. Laser written circuits for quantum photonics[J]. Laser & Photonics Reviews, 9, 363-384(2015).

    [8] Crespi A, Osellame R, Ramponi R et al. Anderson localization of entangled photons in an integrated quantum walk[J]. Nature Photonics, 7, 322-328(2013).

    [9] Gräfe M, Heilmann R, Perez-Leija A et al. On-chip generation of high-order single-photon W-states[J]. Nature Photonics, 8, 791-795(2014).

    [10] Zhang Z Y, Felipe D, Katopodis V et al. Hybrid photonic integration on a polymer platform[J]. Photonics, 2, 1005-1026(2015).

    [11] Xia H Y, Chen T K, Hu C et al. Recent advances of the polymer micro/nanofiber fluorescence waveguide[J]. Polymers, 10, 1086(2018).

    [12] Han X Y, Wu Z L, Yang S C et al. Recent progress of imprinted polymer photonic waveguide devices and applications[J]. Polymers, 10, 603(2018).

    [13] Gunn C, Koch T L. Silicon photonics[M]. ∥Kaminow I P, Li T, Willner A E, et al. Optical fiber telecommunications V A (fifth edition): components and subsystems. Amsterdam: Elsevier, 381-429(2008).

    [14] Hu Y J, Wang S X, Wang D W et al. Research progress of mid-infrared micro-ring resonator and its application[J]. Laser & Optoelectronics Progress, 57, 230004(2020).

    [15] Fathpour S. Emerging heterogeneous integrated photonic platforms on silicon[J]. Nanophotonics, 4, 143-164(2015).

    [16] Komljenovic T, Davenport M, Hulme J et al. Heterogeneous silicon photonic integrated circuits[J]. Journal of Lightwave Technology, 34, 20-35(2016).

    [17] Sohler W, Hu H, Ricken R et al. Integrated optical devices in lithium niobate[J]. Optics and Photonics News, 19, 24-31(2008).

    [18] Weis R S, Gaylord T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 37, 191-203(1985).

    [19] Arizmendi L. Photonic applications of lithium niobate crystals[J]. Physica Status Solidi (a), 201, 253-283(2004).

    [20] Carrascosa M, García-Cabañes A, Jubera M et al. LiNbO3: a photovoltaic substrate for massive parallel manipulation and patterning of nano-objects[J]. Applied Physics Reviews, 2, 040605(2015).

    [21] Bazzan M, Sada C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2, 040603(2015).

    [22] Kong Y, Bo F, Wang W et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 32, e1806452(2020).

    [23] Krasnokutska I. Photonic circuits engineering in lithium niobate on insulator[D]. Melbourne: RMIT University, 9-14(2019).

    [24] Poberaj G, Hu H, Sohler W et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 6, 488-503(2012).

    [25] Jin H, Liu F M, Xu P et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits[J]. Physical Review Letters, 113, 103601(2014).

    [26] Boes A, Corcoran B, Chang L et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 12, 1700256(2018).

    [27] Sulser F, Poberaj G, Koechlin M et al. Photonic crystal structures in ion-sliced lithium niobate thin films[J]. Optics Express, 17, 20291-20300(2009).

    [28] Lin J T, Xu Y X, Fang Z W et al. Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining[J]. Science China Physics, Mechanics & Astronomy, 58, 1-5(2015).

    [29] Lin J, Xu Y, Fang Z et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining for second harmonic generation. [C]∥CLEO: Science and Innovations 2015, May 10-15, 2015, San Jose, California United States. Washington D.C.: Optical Society of America, STh3M, 3(2015).

    [30] Wang J, Bo F, Wan S et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation[J]. Optics Express, 23, 23072-23078(2015).

    [31] Wang C, Zhang M, Chen X et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 562, 101-104(2018).

    [32] Wolf R, Breunig I, Zappe H et al. Cascaded second-order optical nonlinearities in on-chip micro rings[J]. Optics Express, 25, 29927-29933(2017).

    [33] Wolf R, Jia Y C, Bonaus S et al. Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries[J]. Optica, 5, 872-875(2018).

    [34] Li M X, Liang H X, Luo R et al. High-Q 2D lithium niobate photonic crystal slab nanoresonators[J]. Laser & Photonics Reviews, 13, 1800228(2019).

    [35] Gao B F, Ren M X, Wu W et al. Lithium niobate metasurfaces[J]. Laser & Photonics Reviews, 13, 1800312(2019).

    [36] He M B, Xu M Y, Ren Y X et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s -1 and beyond[J]. Nature Photonics, 13, 359-364(2019).

    [37] He L Y, Zhang M, Shams-Ansari A et al. Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits[J]. Optics Letters, 44, 2314-2317(2019).

    [38] Lin J T, Zhou J X, Wu R B et al. High-precision propagation-loss measurement of single-mode optical waveguides on lithium niobate on insulator[J]. Micromachines, 10, 612(2019).

    [39] Lin J T, Yao N, Hao Z Z et al. Broadband quasi-phase-matched harmonic generation in an on-chip monocrystalline lithium niobate microdisk resonator[J]. Physical Review Letters, 122, 173903(2019).

    [40] Fang Z, Xu Y, Wang M et al. Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing[J]. Scientific Reports, 7, 45610(2017).

    [41] Wang M, Yao N, Wu R B et al. Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules[J]. New Journal of Physics, 22, 073030(2020).

    [42] Fang Z W, Yao N, Wang M et al. Fabrication of high quality factor lithium niobate double-disk using a femtosecond laser[J]. International Journal of Optomechatronics, 11, 47-54(2017).

    [43] Wang C, Burek M J, Lin Z et al. Integrated high quality factor lithium niobate microdisk resonators[J]. Optics Express, 22, 30924-30933(2014).

    [44] Zhang M, Wang C, Cheng R et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 4, 1536-1537(2017).

    [45] Jia Y C, Wang L, Chen F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 8, 011307(2021).

    [46] Lin J T, Bo F, Cheng Y et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 8, 1910-1936(2020).

    [47] Wu R, Zhang J, Yao N et al. Lithium niobate micro-disk resonators of quality factors above 10 7[J]. Optics Letters, 43, 4116-4119(2018).

    [48] Gao R, Zhang H, Bo F et al. -01-31)[2021-03-15]. https:∥arxiv., org/abs/2102, 00399(2021).

    [49] Zhang J, Fang Z, Lin J et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 9, 1218(2019).

    [50] Wu R B, Wang M, Xu J et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 8, 910(2018).

    [51] Wang M, Wu R B, Lin J T et al. Chemo-mechanical polish lithography: a pathway to low loss large-scale photonic integration on lithium niobate on insulator[J]. Quantum Engineering, 1, e9(2019).

    [52] Wu R B, Lin J T, Wang M et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanical polish[J]. Optics Letters, 44, 4698-4701(2019).

    [53] Zhou J X, Gao R H, Lin J T et al. Electro-optically switchable optical true delay lines of meter-scale lengths fabricated on lithium niobate on insulator using photolithography assisted chemo-mechanical etching[J]. Chinese Physics Letters, 37, 084201(2020).

    [54] Wang Z, Fang Z, Liu Z et al. On-chip tunable microdisk laser fabricated on Er 3+-doped lithium niobate on insulator[J]. Optics Letters, 46, 380-383(2021).

    [55] Zhou J X, Liang Y T, Liu Z X et al. -01-04)[2021-03-15]. https:∥arxiv., org/abs/2101, 00783(2021).

    [56] Jin M, Chen J Y, Sua Y M et al. High-extinction electro-optic modulation on lithium niobate thin film[J]. Optics Letters, 44, 1265-1268(2019).

    [57] Shao L B, Yu M J, Maity S et al. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators[J]. Optica, 6, 1498-1505(2019).

    [58] Fang Z W, Haque S, Lin J T et al. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator[J]. Optics Letters, 44, 1214-1217(2019).

    [59] He Y, Yang Q F, Ling J W et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 6, 1138-1144(2019).

    [60] Fang Z, Luo H, Lin J et al. Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk[J]. Optics Letters, 44, 5953-5956(2019).

    [61] Fang Z W, Haque S, Farajollahi S et al. Polygon coherent modes in a weakly perturbed whispering gallery microresonator for efficient second harmonic, optomechanical, and frequency comb generations[J]. Physical Review Letters, 125, 173901(2020).

    [62] Zheng Y, Fang Z, Liu S et al. High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator[J]. Physical Review Letters, 122, 253902(2019).

    Lingling Qiao, Min Wang, Rongbo Wu, Zhiwei Fang, Jintian Lin, Wei Chu, Ya Cheng. Ultra-Low Loss Lithium Niobate Photonics[J]. Acta Optica Sinica, 2021, 41(8): 0823012
    Download Citation