• Laser & Optoelectronics Progress
  • Vol. 56, Issue 7, 070004 (2019)
Zhenkai Fan*, Zichao Zhang, Baozhu Wang, Yingying Wang, and Rongjia Zhao
Author Affiliations
  • School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
  • show less
    DOI: 10.3788/LOP56.070004 Cite this Article Set citation alerts
    Zhenkai Fan, Zichao Zhang, Baozhu Wang, Yingying Wang, Rongjia Zhao. Research Progress of Photonic Crystal Fiber Refractive Index Sensors Based on Surface Plasmon Resonance Effect[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070004 Copy Citation Text show less
    References

    [1] Ke L T, Chen W Y, Zhang Y et al. Optimizing design for sensitivity improvement of refractive index sensors based on photonic crystal waveguide[J]. Laser & Optoelectronics Progress, 51, 052304(2014).

    [2] Homola J, Dostálek J, Chen S F et al. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk[J]. International Journal of Food Microbiology, 75, 61-69(2002). http://europepmc.org/abstract/med/11999118

    [3] Wang L, Wan X M, Gao R et al. Preparation and characterization of nanoporous gold film based surface plasmon resonance sensor[J]. Acta Optica Sinica, 38, 0228002(2018).

    [4] Weiss M N, Srivastava R, Groger H et al. A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors[J]. Sensors and Actuators A: Physical, 51, 211-217(1996). http://www.sciencedirect.com/science/article/pii/0924424795012087

    [5] Choi H, Ko S J, Choi Y et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices[J]. Nature Photonics, 7, 732-738(2013). http://www.nature.com/nphoton/journal/v7/n9/abs/nphoton.2013.181.html

    [6] Kajenski P J. Tunable optical filter using long-range surface plasmons[J]. Optical Engineering, 36, 1537-1541(1997). http://adsabs.harvard.edu/abs/1997OptEn..36.1537K

    [7] Schildkraut J S. Long-range surface plasmon electrooptic modulator[J]. Applied Optics, 27, 4587-4590(1988). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-27-21-4587&id=31917

    [8] Wang L C. Ng R J H, Dinachali S S, et al. Large area plasmonic color palettes with expanded gamut using colloidal self-assembly[J]. ACS Photonics, 3, 627-633(2016).

    [9] Johnston K S, Karlsen S R, Jung C C et al. New analytical technique for characterization of thin films using surface plasmon resonance[J]. Materials Chemistry and Physics, 42, 242-246(1995). http://www.sciencedirect.com/science/article/pii/025405849501659I

    [10] Ma J, Yu H H, Xiong J G et al. Research progress of photonic crystal fiber sensors[J]. Laser & Optoelectronics Progress, 54, 070006(2017).

    [11] Zhu C H, Tan C, Wang Y et al. Research on high sensitivity temperature and magnetic field sensor based on surface plasma resonance and mode goupling in photon crystal fibers[J]. Chinese Journal of Lasers, 44, 0310001(2017).

    [12] Jorgenson R C, Yee S S. A fiber-optic chemical sensor based on surface plasmon resonance[J]. Sensors and Actuators B: Chemical, 12, 213-220(1993). http://www.sciencedirect.com/science/article/pii/0925400593800213

    [13] Renn M J, Donley E A, Cornell E A et al. Evanescent-wave guiding of atoms in hollow optical fibers[J]. Physical Review A, 53, R648(1996). http://www.worldscientific.com/doi/abs/10.1142/9789812813787_0056

    [14] Tsurutani B T, Brinca A L, Smith E J et al. A statistical study of ELF-VLF plasma waves at the magnetopause[J]. Journal of Geophysical Research, 94, 1270-1280(1989). http://onlinelibrary.wiley.com/doi/10.1029/JA094iA02p01270/pdf

    [15] Nelson R W, Krone J R, Jansson O. Surface plasmon resonance biomolecular interaction analysis mass spectrometry. 1.Chip-based analysis[J]. Analytical Chemistry, 69, 4363-4368(1997). http://pubs.acs.org/doi/abs/10.1021/ac970538w

    [16] Chen X, Xia L, Li C. Surface plasmon resonance sensor based on a novel D-shaped photonic crystal fiber for low refractive index detection[J]. IEEE Photonics Journal, 10, 6800709(2018). http://ieeexplore.ieee.org/document/8248743/

    [17] Shi W H, You C J, Wu J. D-shaped photonic crystal fiber refractive index and temperature sensor based on surface plasmon resonance and directional coupling[J]. Acta Physica Sinica, 64, 224221(2015).

    [18] Wu T S, Shao Y, Wang Y et al. Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber[J]. Optics Express, 25, 20313-20322(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-17-20313

    [19] Dash J N, Jha R. On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance[J]. Plasmonics, 10, 1123-1131(2015). http://link.springer.com/article/10.1007/s11468-015-9912-7

    [20] Krepel D, Hod O. Physical properties of graphene nanoribbons: insights from first-principles studies[M]. New York: John Wiley & Sons(2013).

    [21] Xavier J, Vincent S, Meder F et al. Advances in optoplasmonic sensors-combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles[J]. Nanophotonics, 7, 1-38(2018).

    [22] Chen S S, Cai W W, Piner R D et al. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils[J]. Nano Letters, 11, 3519-3525(2011). http://www.ncbi.nlm.nih.gov/pubmed/21793495

    [23] Wai P K A, Menyuk C R, Chen H H. Effects of randomly varying birefringence on soliton interactions in optical fibers[J]. Optics Letters, 16, 1735-1737(1991). http://www.ncbi.nlm.nih.gov/pubmed/19784123

    [24] Hassani A, Skorobogatiy M. Photonic crystal fiber-based plasmonic sensors for the detection of biolayer thickness[J]. Journal of the Optical Society of America B, 26, 1550-1557(2009).

    [25] Otupiri R, Akowuah E K, Haxha S et al. A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor[J]. IEEE Photonics Journal, 6, 1-11(2014).

    [26] Villatoro J, Antonio-Lopez E, Zubia J et al. Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing[J]. Optics Express, 25, 25734-25740(2017).

    [27] Zhou S, Huang B, Shu X W. A multi-core fiber based interferometer for high temperature sensing[J]. Measurement Science and Technology, 28, 045107(2017).

    [28] Zhang C B, Ning T G, Li J et al. Refractive index sensor based on tapered multicore fiber[J]. Optical Fiber Technology, 33, 71-76(2017).

    [29] Shuai B B, Xia L, Liu D M. Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor[J]. Optics Express, 20, 25858-25866(2012).

    [30] Dash J N, Jha R. Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance[J]. IEEE Photonics Technology Letters, 26, 1092-1095(2014).

    [31] Hassani A, Skorobogatiy M. Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics[J]. Optics Express, 14, 11616-11621(2006).

    [32] Rifat A A, Mahdiraji G A, Chow D M et al. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core[J]. Sensors, 15, 11499-11510(2015).

    [33] Lu M D, Peng W, Liu Q et al. Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements[J]. Optics Express, 25, 8563-8570(2017).

    [34] Shuai B B, Xia L, Zhang Y T et al. A multi-core holey fiber based plasmonic sensor with large detection range and high linearity[J]. Optics Express, 20, 5974-5986(2012).

    Zhenkai Fan, Zichao Zhang, Baozhu Wang, Yingying Wang, Rongjia Zhao. Research Progress of Photonic Crystal Fiber Refractive Index Sensors Based on Surface Plasmon Resonance Effect[J]. Laser & Optoelectronics Progress, 2019, 56(7): 070004
    Download Citation