• Chinese Optics Letters
  • Vol. 22, Issue 2, 021901 (2024)
Ziqi Zeng1, Shixin You1, Zixiang Yang1, Chenzhi Yuan1, Chenglong You2, and Ruibo Jin1、*
Author Affiliations
  • 1Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
  • 2Quantum Photonics Laboratory, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
  • show less
    DOI: 10.3788/COL202422.021901 Cite this Article Set citation alerts
    Ziqi Zeng, Shixin You, Zixiang Yang, Chenzhi Yuan, Chenglong You, Ruibo Jin. Controllable transitions among phase-matching conditions in a single nonlinear crystal[J]. Chinese Optics Letters, 2024, 22(2): 021901 Copy Citation Text show less
    References

    [1] A. Anwar, C. Perumangatt, F. Steinlechner et al. Entangled photon-pair sources based on three-wave mixing in bulk crystals. Rev. Sci. Instrum., 92, 041101(2021).

    [2] K. Zhang, S. Liu, Y. Chen et al. Optical quantum states based on hot atomic ensembles and their applications. Photon. Insights, 1, R06(2022).

    [3] A. Christ, A. Migdall, A. Fedrizzi, H. Hübel et al. Parametric down-conversion. Experimental Methods in the Physical Sciences, 351(2013).

    [4] C. Zhang, Y.-F. Huang, B.-H. Liu et al. Spontaneous parametric down-conversion sources for multiphoton experiments. Adv. Quantum Technol., 4, 2000132(2021).

    [5] C. L. Morrison, F. Graffitti, P. Barrow et al. Frequency-bin entanglement from domain-engineered down-conversion. APL Photonics, 7, 066102(2022).

    [6] J.-L. Zhu, W.-X. Zhu, X.-T. Shi et al. Design of mid-infrared entangled photon sources using lithium niobate. J. Opt. Soc. Am. B, 40, A9(2023).

    [7] V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan. Handbook of Nonlinear Optical Crystals, 64(2013).

    [8] J. A. Nielsen, J. S. Neergaard-Nielsen, T. Gehring et al. Deterministic quantum phase estimation beyond NOON states. Phys. Rev. Lett., 130, 123603(2023).

    [9] M. Reisner, F. Mazeas, R. Dauliat et al. Quantum-limited determination of refractive index difference by means of entanglement. NPJ Quantum Inf., 8, 58(2022).

    [10] K. Hayama, B. Cao, R. Okamoto et al. High-depth-resolution imaging of dispersive samples using quantum optical coherence tomography. Opt. Lett., 47, 4949(2022).

    [11] D. Tabakaev, M. Montagnese, G. Haack et al. Energy-time-entangled two-photon molecular absorption. Phys. Rev. A, 103, 033701(2021).

    [12] Y. Chen, S. Ecker, L. Chen et al. Temporal distinguishability in Hong-Ou-Mandel interference for harnessing high-dimensional frequency entanglement. NPJ Quantum Inf., 7, 167(2021).

    [13] J. Yin, Y. Cao, Y.-H. Li et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140(2017).

    [14] H.-S. Zhong, H. Wang, Y.-H. Deng et al. Quantum computational advantage using photons. Science, 370, 1460(2020).

    [15] A. Lyons, G. C. Knee, E. Bolduc et al. Attosecond-resolution Hong-Ou-Mandel interferometry. Sci. Adv., 4, eaap9416(2018).

    [16] Y. Guo, Z.-X. Yang, Z.-Q. Zeng et al. Comparison of multi-mode Hong-Ou-Mandel interference and multi-slit interference. Opt. Express, 31, 32849(2023).

    [17] K. Edamatsu, R. Shimizu, W. Ueno et al. Photon pair sources with controlled frequency correlation. Prog. Inform., 8, 19(2011).

    [18] F. Graffitti, P. Barrow, A. Pickston et al. Direct generation of tailored pulse-mode entanglement. Phys. Rev. Lett., 124, 053603(2020).

    [19] H. J. Lee, H. Kim, M. Cha et al. Simultaneous type-0 and type-II spontaneous parametric down-conversions in a single periodically poled KTiOPO4 crystal. Appl. Phys. B, 108, 585(2012).

    [20] F. Steinlechner, M. Gilaberte, M. Jofre et al. Efficient heralding of polarization-entangled photons from type-0 and type-II spontaneous parametric downconversion in periodically poled KTiOPO4. J. Opt. Soc. Am. B, 31, 2068(2014).

    [21] J. Chen, A. J. Pearlman, A. Ling et al. A versatile waveguide source of photon pairs for chip-scale quantum information processing. Opt. Express, 17, 6727(2009).

    [22] F. Laudenbach, S. Kalista, M. Hentschel et al. A novel single-crystal single-pass source for polarisation- and colour-entangled photon pairs. Sci. Rep., 7, 7235(2017).

    [23] T. Y. Fan, C. E. Huang, B. Q. Hu et al. Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4. Appl. Opt., 26, 2390(1987).

    [24] K. Fradkin, A. Arie, A. Skliar et al. Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4. Appl. Phys. Lett., 74, 914(1999).

    [25] S. Emanueli, A. Arie. Temperature-dependent dispersion equations for KTiOPO4 and KTiOAsO4. Appl. Opt., 42, 6661(2003).

    [26] R. W. Boyd. Nonlinear Optics(2020).

    [27] S. Niu, Z. Zhou, J. Cheng et al. Multi-color laser generation in periodically poled KTP crystal with single period. Chin. Opt. Lett., 21, 021901(2023).

    [28] S.-J. Niu, C. Yang, Y. Li et al. Cavity-enhanced frequency doubling with a third-order quasi-phase-matched PPKTP crystal. J. Opt. Soc. Am. B, 38, 2775(2021).

    [29] N. Cai, W.-H. Cai, S. Wang et al. Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-sagnac polarization-entangled photon source. J. Opt. Soc. Am. B, 39, 77(2022).

    [30] R.-B. Jin, R. Shimizu, K. Wakui et al. Widely tunable single photon source with high purity at telecom wavelength. Opt. Express, 21, 10659(2013).

    [31] Z. Zhang, C. Yuan, S. Shen et al. High-performance quantum entanglement generation via cascaded second-order nonlinear processes. NPJ Quantum Inf., 7, 123(2021).

    [32] S. Shen, C. Yuan, Z. Zhang et al. Hertz-rate metropolitan quantum teleportation. Light Sci. Appl., 12, 115(2023).

    [33] A. Fedrizzi, T. Herbst, A. Poppe et al. A wavelength-tunable fiber-coupled source of narrowband entangled photons. Opt. Express, 15, 15377(2007).

    [34] Y.-C. Liu, D.-J. Guo, R. Yang et al. Narrowband photonic quantum entanglement with counterpropagating domain engineering. Photonics Res., 9, 1998(2021).

    [35] L. Hong, Y. Zhang, Y. Chen et al. Fast quantifier of high-dimensional frequency entanglement through Hong–Ou–Mandel interference. Adv. Quantum Technol., 6, 2300012(2023).

    [36] J. Yin, Y. Cao, Y.-H. Li et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140(2017).

    [37] Y.-C. Jeong, K.-H. Hong, Y.-H. Kim. Bright source of polarization-entangled photons using a PPKTP pumped by a broadband multi-mode diode laser. Opt. Express, 24, 1165(2016).

    [38] A. Lohrmann, C. Perumangatt, A. Villar et al. Broadband pumped polarization entangled photon-pair source in a linear beam displacement interferometer. Appl. Phys. Lett., 116, 021101(2020).

    [39] N. Cai, W.-H. Cai, S. Wang et al. Broadband-laser-diode pumped periodically poled potassium titanyl phosphate-Sagnac polarization-entangled photon source. J. Opt. Soc. Am. B, 39, 77(2021).

    [40] Z.-X. Yang, Z.-Q. Zeng, Y. Tian et al. Spatial–spectral mapping to prepare frequency entangled qudits. Opt. Lett., 48, 2361(2023).

    [41] W. Wang, K. Zhang, J. Jing. Large-scale quantum network over 66 orbital angular momentum optical modes. Phys. Rev. Lett., 125, 140501(2020).

    [42] K. Zhang, W. Wang, S. Liu et al. Reconfigurable hexapartite entanglement by spatially multiplexed four-wave mixing processes. Phys. Rev. Lett., 124, 090501(2020).

    [43] H. Vanherzeele, J. D. Bierlein. Magnitude of the nonlinear-optical coefficients of KTiOPO4. Opt. Lett., 17, 982(1992).

    [44] C. Lanczos, J. Boyd. Discourse on Fourier Series(2016).

    Ziqi Zeng, Shixin You, Zixiang Yang, Chenzhi Yuan, Chenglong You, Ruibo Jin. Controllable transitions among phase-matching conditions in a single nonlinear crystal[J]. Chinese Optics Letters, 2024, 22(2): 021901
    Download Citation