[1] Zhou Y. Microjoining and Nanojoining[M]. Cambridge: Woodhead Publishing Ltd Press, 2008: 346.
[2] Helie D, Lacroix F, Vallee R. Bonding of optical materials by femtosecond laser welding for aerospace and high power laser applications[C]. Proceedings of the SPIE: The International Society for Optical Engineering, 2012, 8412: 841210.
[3] Elrefaey A, Rusch J J, Koebel M M. Direct glass-to-metal joining by simultaneous anodic bonding and soldering with activated liquid tin solder[J]. Journal of Materials Processing Technology, 2014, 214(11): 2716-2722.
[4] Han W, Pryputniewicz R J. Mechanical characterizations of laser microwelds for MEMS packaging[C]. Mat Res Soc Symp Proc, 2002, 782: A582.
[5] Hu A, Panda S K, Khan M I, et al.. Laser welding, microwelding, nanowelding And nanoprocessing[J]. Chinese J Lasers, 2009, 36(12): 3149-3159.
[6] Luo C, Lin L W. The application of nanosecond- pulsed laser welding technology in MEMS packaging with a shadow mask[J]. Sensors and Actuators A: Physical, 2002, 97: 398-404.
[7] Zhou Y, Hu A, Khan M I, et al.. Recent progress in micro and nano- joining[J].Journal of Physics: Conference Series, 2009, 165(1): 012012.
[8] Zhou Y. Microjoining and Nanojoining[M]. Cambridge: Woodhead Publishing Ltd Press, 2008: 392-396.
[9] Jones I A, Taylor N S, Sallavanti R, et al.. Use of infrared dyes for transmission laser welding of plastics[C]. SPE ANTEC 2000 conference, 2000, 1: 1166-1170.
[10] Richter S, Doring S, Zimmermann F, et al.. Welding of transparent materials with ultrashort laser pulses[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2012, 8244: 824402.
[11] Lebugle M, Sanner N, Varkentina N, et al.. Dynamics of femtosecond laser absorption of fused silica in the ablation regime[J]. Journal of Applied Physics, 2014, 116(6): 063105.
[12] Schaffer C B, Brodeur A, Mazur E. Laser- induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses[J]. Measurement Science and Technology, 2001, 12(11): 1784-1794.
[13] Watanabe W, Onda S, Tamaki T, et al.. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses[J]. Applied Physics Letters, 2006, 89(2): 021106.
[14] Varkentina N, Sanner N, Lebugle M, et al.. Absorption of a single 500 fs laser pulse at the surface of fused silica: Energy balance and ablation efficiency[J]. Journal of Applied Physics, 2013, 114(17): 173105.
[15] Miyamoto I, Cvecek K, Okamoto Y, et al.. Characteristics of laser absorption and welding in FOTURAN glass by ultrashort laser pulses[J]. Optics Express, 2011, 19(23): 22961-22973.
[16] Vonderlinde D, Schüler H. Breakdown threshold and plasma formation in femtosecond laser- solid interaction[J]. Journal of the Optical Society of America B, 1996, 13(1): 216-222.
[17] Siegel J, Puerto D, Gawelda W, et al.. Plasma formation and structural modification below the visible ablation threshold in fused silica upon femtosecond laser irradiation[J]. Applied Physics Letters, 2007, 91(8): 082902.
[18] Jia T Q, Xu Z Z, Li R X, et al.. Mechanisms in fs-laser ablation in fused silica[J]. Journal of Applied Physics, 2004, 95(9): 5166-5171 .
[19] Fang J Q, Jiang L, Cao Q, et al.. Doping transition metal ions as a method for enhancement of ablation rate in femtosecond laser irradiation of silicate glass[J]. Chinese Optics Letters, 2014, 12(12): 121402.
[20] Kudriasov V, Gaizauskas E, Sirutkaitis V. Beam transformation and permanent modification in fused silica induced by femtosecond filaments[J]. Journal of the Optical Society of America B, 2005, 22(12), 2619-2627.
[21] Rethfeld B, Tinten K S, Linde D V, et al.. Timescales in the response of materials to femtosecond laser excitation[J]. Applied Physics A, 2004, 79(4-6): 767-769.
[22] Mao S S, Quere F, Guizard S, et al.. Dynamics of femtosecond laser interactions with dielectrics[J]. Applied Physics A, 2004, 79(7): 1695-1709.
[23] Watanabe W, Onda S, Tamaki T, et al.. Joining of transparent materials by femtosecond laser pulses[C]. Proceedings of the SPIE, 2007, 6460: 646017.
[24] Tamaki T, Watanabe W, Nishii J, et al.. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics, 2005, 44(22): L687-L689.
[25] WatanabeW, Onda S, Tamaki T, et al.. Direct joining of glass substrates by 1 kHz femtosecond laser pulses[J]. Applied Physics B, 2007, 87(1): 85-89.
[26] Itoh K, Tamaki T. Ultrafast laser microwelding for transparent and heterogeneous materials[C]. Proceedings of the SPIE, 2008, 6881: 68810V.
[27] Wu S, Wu D, Xu J, et al.. Absorption mechanism of the second pulse in double-pulse femtosecond laser glass microwelding [J]. Optics Express, 2013, 21(20): 24049-24059.
[28] Wu S, Wu D, Xu J, et al.. Characterization and mechanism of glass microwelding by double- pulse ultrafast laser irradiation[J]. Optics Express, 2012, 20(27): 28893-28905.
[29] Sugioka K, Lida M, Takai H, et al.. Efficient microwelding of glass substrates by ultrafast laser irradiation using a double-pulse train[J]. Optics Letters, 2011, 3614(14): 2734-2736.
[30] Miyamoto I, Cvecek K, Okamoto Y, et al.. Internal modification of glass by ultrashort laser pulse and its application to microwelding[J]. Applied Physics A, 2014, 114(1): 187-208.
[31] Miyamoto I, Cvecek K, Schmidt M. Evaluation of nonlinear absorptivity and absorption region in fusion welding of glass using ultrashort laser pulses[J]. Physics Procedia, 2011, 12: 378-386.
[32] Miyamoto I, Cvecek K, Okamoto Y, et al.. Novel fusion welding technology of glass using ultrashort pulse lasers[J]. Physics Procedia, 2010, 5: 483-493.
[33] Miyamoto I, Horn A, Gottmann J, et al.. Fusion welding of glass using femtosecond laser pulses with high- repetition rates[J]. Journal of Laser Micro Nanoengineering, 2007, 2(1): 57-63.
[34] Miyamoto I , Horn A, Gottmann J. Local melting of glass material and its application to direct fusion welding by pslaser pulses[J]. Journal of Laser Micro/Nanoengineering, 2007, 2(1): 7-14.
[35] Alexeev I, Cvecek K, Schmidt C, et al.. Characterization of shear strength and bonding energy of laser produced welding seams in glass[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3): 279-283.
[36] Tamaki T, Watanabe W, Itoh K. Laser micro- welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm[J]. Optics Express, 2006, 14(22): 10460-10468.
[37] Tamaki T, Watanabe W, Itoh K, et al.. Laser micro-welding of silicon and borosilicate glass using nonlinear absorption effect induced by 1558-nm femtosecond fiber laser pulses[C]. Proceedings of the SPIE, 2007, 6460: 646018.
[38] Lacroix F, Helie D, Vallee R, et al.. Optical bonding reinforced by femtosecond laser welding[C]. Proceedings of the SPIE, 2011, 8126: 812612.
[39] Helie D, Begin M, Lacroix F, et al.. Reinforced direct bonding of optical materials by femtosecond laser welding[J]. Applied Optics, 2012, 51(12): 2098-2106.
[40] Helie D, Lacroix F, Vallee R. Reinforcing a direct bond between optical materials by filamentation based femtosecond laser welding[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(3): 284-292.
[41] Richter S, Zimmermann F, Doring S, et al.. Ultrashort high repetition rate exposure of dielectric materials: Laser bonding of glasses analyzed by micro-Raman spectroscopy[J]. Applied Physics A, 2012, 110(1): 9-15.
[42] Zimmermann F , Richter S, Doring S, et al.. Ultrastable bonding of glass with femtosecond laser bursts[J]. Applied Optics, 2013, 52(3), 1149-1154.
[43] Horn A, Mingareev I, Werth A. Investigations on melting and welding of glass by ultra-short laser radiation[J]. Journal of Laser Micro/Nanoengineering, 2008, 3(2): 114-118.
[44] Horn A, Mingaeev I, Werth A, et al.. Joining of thin glass with semiconductors by ultra- fast high- repetition laser welding[C]. Proceedings of the SPIE, 2008, 6880: 68800A.
[45] Huang H, Yang L M, Liu J. Ultrashort pulsed fiber laser welding and sealing of transparent materials[J]. Applied Optics, 2012, 51(15): 2979-2986.
[46] Eaton S M, Zhang H B, Herman P R, et al.. Heat accumulation effects in femtosecond laser- written waveguides with variable repetition rate[J]. Optics Express, 2005, 13(12): 4708-4716.
[47] Eaton S M, Zhang H, Ng M L, et al.. Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides[J]. Optics Express, 2008, 16(13): 9443-9458.
[48] Kongsuwan P, Satoh G, Yao Y L. Transmission welding of glass by femtosecond laser: Mechanism and fracture strength [J]. Journal of Manufacturing Science and Engineering, 2012, 134(1): 011004.
[49] Shimizu M, Sakakura M, Ohnishi M, et al.. Three-dimensional temperature distribution and modification mechanism in glass during ultrafast laser irradiation at high repetition rates[J]. Optics Express, 2012, 20(2): 934-940.
[50] Miyamoto I, Cvecek K, Schmidt M. Evaluation of nonlinear absorptivity in internal modification of bulk glass by ultrashort laser pulses[J]. Optics Express, 2011, 19(11): 10714-10727.
[51] Cvecek K, Miyamoto I, Strauss J, et al.. Strength of joining seams in glass welded by ultra- fast lasers depending on focus height[J]. Journal of Laser Micro/Nanoengineering, 2012, 7(1): 68-72.
[52] Sakakura M, Shimizu M, Shimotsuma Y, et al.. Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses[J]. Appl Phys Lett, 2008, 93(23): 231112.
[53] Utsumi A, Ooie T, Yano T, et al.. Direct bonding of glass and metal using short pulsed laser[J]. Journal of Laser Micro/Nanoengineering, 2007, 2(2): 133-136.
[54] Carter R M, Chen J, Shephard J D, et al.. Picosecond laser welding of similar and dissimilar materials[J]. Applied Optics, 2014, 53(19): 4233-4238.
[55] Sugioka K, Cheng Y. Femtosecond laser three- dimensional micro- and nanofabrication[J] Applied Physics Reviews, 2014, 1(4): 041303.
[56] Richter S, Doring S, Tünnermann A, et al.. Bonding of glass with femtosecond laser pulses at high repetition rates[J]. Applied Physics A, 2011, 103(2): 257-261.
[57] Miyamoto I, Cvecek K, Schmidt M. Crack- free conditions in welding of glass by ultrashort laser pulse[J]. Optics Express, 2013, 21(12): 14291-14302.
[58] Cvecek K, Miyamoto I, Strauss J, et al.. Sample preparation method for glass welding by ultrashort laser pulses yields higher seam strength[J]. Applied Optics, 2011, 50(13): 1941-1944.
[59] Horn A, Mingareev I, Werth A, et al.. Investigations on ultrafast welding of glass– glass and glass– silicon[J]. Applied Physics A, 2008, 93(1): 171-175.
[60] Okamoto Y, Miyamoto I, Cvecek K, et al.. Evaluation of molten zone in micro- welding of glass by picosecond pulsed laser[J]. Journal of Laser Micro/Nanoengineering, 2013, 8(1): 65-69.
[61] Helie D, Gouin S, Vallee R. Assembling an endcap to optical fibers by femtosecond laser welding and milling[J]. Optical Materials Express, 2013, 3(10): 1742-1754.
[62] Ratautas K, Raciukaitis G, Gedvilas M. Sphere- to- plate glass welding using picosecond- laser radiation[J]. Journal of Laser Micro/Nanoengineering, 2013, 8(2): 175-182.
[63] Kim Y, Choi J, Lee Y, et al.. Femtosecond laser bonding of glasses and ion migration in the interface[J]. Applied Physics A, 2010, 101(1): 147-152.
[64] Richter S, Doring S, Peschel T, et al.. Breaking stress of glass welded with femtosecond laser pulses at high repetition rates[C]. Proceedings of the SPIE, 2011, 7925: 79250P.
[65] Butkus S, Gaizauskas E, Paipulas D, et al.. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses[J]. Applied Physics A, 2014, 114(1): 81-90.
[66] Jagannadh V K, Mackenzie M D, Pal P, et al.. Imaging flow cytometry with femtosecond laser- micromachined glass microfluidic channels[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 6800106.
[67] Chang C L, Ju W H, Liou C L, et al.. Rapid microfluidic biochips fabrication by femtosecond laser on glass substrate[J]. Key Engineering Materials, 2011, 483: 359-363.
[68] Sugioka K, Xu J, Wu D, et al.. Femtosecond laser 3D micromachining: A powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass[J]. Lab on a Chip, 2014, 14(18): 3447-3458.
[69] Wu D, Wu S Z, Xu J, et al.. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-a-bottle biochip[J]. Laser & Photonics Reviews, 2014, 8(3): 458-467.
[70] Bellouard Y. Ultrafast laser processing of glass for MEMS and micro-fluidic applications[C]. European Quantum Electronics Conference on Lasers and Electro-Optics, 2009.
[71] Melkas N G. Laser Techniques in Glass Joining[M]. Finland: Primoceler Inc Press, 2014: 25-27.
[72] Narayan R, Goering P. Laser micro-and nanofabrication of biomaterials[J]. MRS Bulletin, 2011, 36(12): 973-982.
[73] Ju Y, Liu C, Liao Y, et al.. Direct fabrication of a microfluidic chip for electrophoresis analysis by water- assisted femtosecond laser writing in porous glass[J]. Chin Opt Lett, 2013, 11(7): 072201.
[74] Bardin F, Kloss S, Wang C H, et al.. Laser joining of glass to silicon using adhesive for MEMS packaging applications[J]. Proceedings of the SPIE, 2006, 6107: 16-27.
[75] Xiao D B, Zhang X, Hou Z Q, et al.. UV laser dicing without failure caused by contamination and heat for thick anodically bonded silicon/glass MEMS wafers[C]. Solid-State Sensors, Actuators and Microsystems Conference, 2011: 2339-2342.
[76] Yang D, Xu C, Zhao L, et al.. Improving bonding quality in MEMS using silicon/gold/glass bonding by laser[C]. Solid-State and Integrated Circuits Technology, 2004, 3: 1860-1862.
[77] Jing Z S, Zhou Z L, Mei C, et al.. A novel method to dicing anodically bonded silicon glass MEMS wafers based on UV laser technique[J]. Applied Mechanics & Materials, 2014, 511: 3-7.
[78] Itoh K . Ultrafast laser processing of glass[J]. Journal of Laser Micro/Nanoengineering, 2014, 9(3): 187-191.