• High Power Laser Science and Engineering
  • Vol. 10, Issue 6, 06000e38 (2022)
Fenxiang Wu, Jiabing Hu, Xingyan Liu, Zongxin Zhang, Peile Bai, Xinliang Wang, Yang Zhao, Xiaojun Yang, Yi Xu*, Cheng Wang, Yuxin Leng, and Ruxin Li
Author Affiliations
  • State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, China
  • show less
    DOI: 10.1017/hpl.2022.29 Cite this Article Set citation alerts
    Fenxiang Wu, Jiabing Hu, Xingyan Liu, Zongxin Zhang, Peile Bai, Xinliang Wang, Yang Zhao, Xiaojun Yang, Yi Xu, Cheng Wang, Yuxin Leng, Ruxin Li. Dispersion management for a 100 PW level laser using a mismatched-grating compressor[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e38 Copy Citation Text show less

    Abstract

    We report dispersion management based on a mismatched-grating compressor for a 100 PW level laser, which utilizes optical parametric chirped pulse amplification and also features large chirped pulse duration and an ultra-broadband spectrum. The numerical calculation indicates that amplified pulses with 4 ns chirped pulse duration and 210 nm spectral bandwidth can be directly compressed to sub-13 fs, which is close to the Fourier-transform limit (FTL). More importantly, the tolerances of the mismatched-grating compressor to the misalignment of the stretcher, the error of the desired grating groove density and the variation of material dispersion are comprehensively analyzed, which is crucially important for its practical application. The results demonstrate that good tolerances and near-FTL compressed pulses can be achieved simultaneously, just by keeping a balance between the residual second-, third- and fourth-order dispersions in the laser system. This work can offer a meaningful guideline for the design and construction of 100 PW level lasers.
    $$\begin{align}{\phi}_{\mathrm{s}}\left(\omega \right)=\frac{\omega }{c}\left\{\frac{G_{\textrm{s}}}{\mathrm{cos}{\beta}_{\textrm{s}}}\left[\mathrm{sin}\left({\theta}_{\textrm{s}}-{\beta}_{\textrm{s}}\right)\mathrm{tan}{\theta}_{\textrm{s}}-1\right]\right\}+\frac{2\pi {G}_{\textrm{s}}}{d_{\textrm{s}}}\mathrm{tan}{\beta}_{\textrm{s}},\end{align}$$((1))

    View in Article

    $$\begin{align}\!\!\!\!\!\!{\phi}_{\textrm{c}}\left(\omega \right)=\frac{\omega }{c}\left\{\frac{G_{\textrm{c}}}{\mathrm{cos}{\beta}_{\textrm{c}}}\left[\mathrm{cos}\left({\theta}_{\textrm{c}}-{\beta}_{\textrm{c}}\right)+1\right]\right\}-\frac{2\pi {G}_{\textrm{c}}}{d}\mathrm{tan}{\beta}_{\textrm{c}}.\end{align}$$((2))

    View in Article

    Fenxiang Wu, Jiabing Hu, Xingyan Liu, Zongxin Zhang, Peile Bai, Xinliang Wang, Yang Zhao, Xiaojun Yang, Yi Xu, Cheng Wang, Yuxin Leng, Ruxin Li. Dispersion management for a 100 PW level laser using a mismatched-grating compressor[J]. High Power Laser Science and Engineering, 2022, 10(6): 06000e38
    Download Citation