• Laser & Optoelectronics Progress
  • Vol. 59, Issue 19, 1900008 (2022)
Xin Zhao*, Chengchao Huang, Meng Li, Haodong Zhao, and Huarong Yang
Author Affiliations
  • College of Aeronautical Engineering, Civil Aviation Flight University of China, Guanghan618307, Sichuan, China
  • show less
    DOI: 10.3788/LOP202259.1900008 Cite this Article Set citation alerts
    Xin Zhao, Chengchao Huang, Meng Li, Haodong Zhao, Huarong Yang. Application and Research Status of Laser Structured Superhydrophobic Surfaces[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900008 Copy Citation Text show less
    References

    [1] Hao P F, Yao Z H, Zhang X W. Study of dynamic hydrophobicity of micro-structured hydrophobic surfaces and lotus leaves[J]. Science China Physics, Mechanics and Astronomy, 54, 675-682(2011).

    [2] Wang P W, Liu M J, Jiang L. Bioinspired multiscale interfacial materials with superwettability[J]. Acta Physica Sinica, 65, 186801(2016).

    [3] Feng L, Zhang Y N, Xi J M et al. Petal effect: a superhydrophobic state with high adhesive force[J]. Langmuir, 24, 4114-4119(2008).

    [4] Yong E Y, Yang Q, Chen F et al. Femtosecond laser-induced superwetting surfaces[J]. Chinese Science Bulletin, 64, 1213-1237(2019).

    [5] Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 202, 1-8(1997).

    [6] Chen Y, Zhang Y B, Shi L et al. Transparent superhydrophobic/superhydrophilic coatings for self-cleaning and anti-fogging[J]. Applied Physics Letters, 101, 033701(2012).

    [7] Wang C Z, Tang F, Li Q et al. Spray-coated superhydrophobic surfaces with wear-resistance, drag-reduction and anti-corrosion properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 514, 236-242(2017).

    [8] Esmaeilirad A, Rukosuyev M V, Jun M B G et al. A cost-effective method to create physically and thermally stable and storable super-hydrophobic aluminum alloy surfaces[J]. Surface and Coatings Technology, 285, 227-234(2016).

    [9] Hao L F, Yang J J, Xu W et al. Fabrication of durable superhydrophobic coating on fabric surface by layer-by-layer self-assembly method and its performance[J]. Journal of Shaanxi University of Science & Technology, 37, 68-73(2019).

    [10] Carneiro A, Ferreira F, Houmard M. Easy functionalization process applied to develop super-hydrophobic and oleophobic properties on ASTM 1200 aluminum surface[J]. Surface and Interface Analysis, 50, 1370-1383(2018).

    [11] Tang Y F, Gao S Y, Zhao K et al. Fabrication of super-hydrophobic and superoleophilic silica micro-nano fibers membranes by electrospinning[J]. Journal of Synthetic Crystals, 43, 929-936(2014).

    [12] Jain R, Pitchumani R. Fabrication and characterization of zinc-based superhydrophobic coatings[J]. Surface and Coatings Technology, 337, 223-231(2018).

    [13] Zhao M R, Zhou H Y, Kang W Q et al. Comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 38, 361-379(2021).

    [14] Pan R, Zhong M L. Fabrication of superwetting surfaces by ultrafast lasers and mechanical durability of superhydrophobic surfaces[J]. Chinese Science Bulletin, 64, 1268-1289(2019).

    [15] Baldacchini T, Carey J E, Zhou M et al. Superhydrophobic surfaces prepared by microstructuring of silicon using a femtosecond laser[J]. Langmuir: the ACS Journal of Surfaces & Colloids, 22, 4917-4919(2006).

    [16] Starinskiy S V, Bulgakov A V, Gatapova E Y et al. Transition from superhydrophilic to superhydrophobic of silicon wafer by a combination of laser treatment and fluoropolymer deposition[J]. Journal of Physics D: Applied Physics, 51, 255307(2018).

    [17] Xi M, Yong J L, Chen F et al. A femtosecond laser-induced superhygrophobic surface: beyond superhydrophobicity and repelling various complex liquids[J]. RSC Advances, 9, 6650-6657(2019).

    [18] Wang R R, Zhang W C, Jin F et al. Fabrication of polyaniline microstructure via two-photon polymerization[J]. Chinese Journal of Lasers, 48, 0202006(2021).

    [19] Bai X, Chen F. Recent advances in femtosecond laser-induced superhydrophobic surfaces[J]. Acta Optica Sinica, 41, 0114003(2021).

    [20] Young T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 95, 65-87(1805).

    [21] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 28, 988-994(1936).

    [22] Cassie A B D, Baxter S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 40, 546-551(1944).

    [23] Ding K W, Wang C, Luo Z et al. Principle and method of ultrafast laser beam shaping and its application in functional microstructure fabrication[J]. Chinese Journal of Lasers, 48, 0202005(2021).

    [24] Zheng B Y, Di Y L, Wang H D et al. Research progress in preparation of super-hydrophobic surface of metal matrix by laser processing[J]. Materials Reports, 34, 23109-23120(2020).

    [25] Jagdheesh R, Diaz M, Ocaña J L. Bio inspired self-cleaning ultrahydrophobic aluminium surface by laser processing[J]. RSC Advances, 6, 72933-72941(2016).

    [26] Song J J, Wang D R, Hu L Y et al. Superhydrophobic surface fabricated by nanosecond laser and perhydropolysilazane[J]. Applied Surface Science, 455, 771-779(2018).

    [27] Khan S A, Boltaev G S, Iqbal M et al. Ultrafast fiber laser-induced fabrication of superhydrophobic and self-cleaning metal surfaces[J]. Applied Surface Science, 542, 148560(2021).

    [28] Nguyen H H, Tieu A K, Wan S H et al. Surface characteristics and wettability of superhydrophobic silanized inorganic glass coating surfaces textured with a picosecond laser[J]. Applied Surface Science, 537, 147808(2021).

    [29] Huerta-Murillo D, Aguilar-Morales A I, Alamri S et al. Fabrication of multi-scale periodic surface structures on Ti-6Al-4V by direct laser writing and direct laser interference patterning for modified wettability applications[J]. Optics and Lasers in Engineering, 98, 134-142(2017).

    [30] Peter A, Lutey A H A, Faas S et al. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces[J]. Optics & Laser Technology, 123, 105954(2020).

    [31] Milles S, Soldera M, Voisiat B et al. Fabrication of superhydrophobic and ice-repellent surfaces on pure aluminium using single and multiscaled periodic textures[J]. Scientific Reports, 9, 13944(2019).

    [32] Aguilar-Morales A I, Alamri S, Lasagni A F. Micro-fabrication of high aspect ratio periodic structures on stainless steel by picosecond direct laser interference patterning[J]. Journal of Materials Processing Technology, 252, 313-321(2018).

    [33] Long J Y, Fan P X, Zhong M L et al. Superhydrophobic and colorful copper surfaces fabricated by picosecond laser induced periodic nanostructures[J]. Applied Surface Science, 311, 461-467(2014).

    [34] Allahyari E, Nivas JJJ, Oscurato S L et al. Laser surface texturing of copper and variation of the wetting response with the laser pulse fluence[J]. Applied Surface Science, 470, 817-824(2019).

    [35] Vercillo V, Tonnicchia S, Romano J M et al. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications[J]. Advanced Functional Materials, 30, 1910268(2020).

    [36] Lin Y, Han J P, Cai M Y et al. Durable and robust transparent superhydrophobic glass surfaces fabricated by a femtosecond laser with exceptional water repellency and thermostability[J]. Journal of Materials Chemistry A, 6, 9049-9056(2018).

    [37] Alamri S, Vercillo V, Aguilar-Morales A I et al. Self-limited ice formation and efficient de-icing on superhydrophobic micro-structured airfoils through direct laser interference patterning[J]. Advanced Materials Interfaces, 7, 2001231(2020).

    [38] Rajab F H, Liauw C M, Benson P S et al. Production of hybrid macro/micro/nano surface structures on Ti6Al4V surfaces by picosecond laser surface texturing and their antifouling characteristics[J]. Colloids and Surfaces B: Biointerfaces, 160, 688-696(2017).

    [39] Yang Z, Liu X P, Tian Y L. A contrastive investigation on anticorrosive performance of laser-induced super-hydrophobic and oil-infused slippery coatings[J]. Progress in Organic Coatings, 138, 105313(2020).

    [40] Qin Z L, Xiang H Q, Liu J G et al. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling[J]. Materials & Design, 184, 108200(2019).

    [41] Zhang Y Y, Jiao Y L, Li C Z et al. Bioinspired micro/nanostructured surfaces prepared by femtosecond laser direct writing for multi-functional applications[J]. International Journal of Extreme Manufacturing, 2, 032002(2020).

    [42] Li J C, Chen Z D, Han D D et al. Laser processing of polyvinylidene fluoride with superhydrophobicity[J]. Chinese Journal of Lasers, 48, 0202002(2021).

    [43] Estevam-Alves R, Günther D, Dani S et al. UV direct laser interference patterning of polyurethane substrates as tool for tuning its surface wettability[J]. Applied Surface Science, 374, 222-228(2016).

    [44] Huerta-Murillo D, García-Girón A, Romano J M et al. Wettability modification of laser-fabricated hierarchical surface structures in Ti-6Al-4V titanium alloy[J]. Applied Surface Science, 463, 838-846(2019).

    [45] Aguilar-Morales A I, Alamri S, Voisiat B et al. The role of the surface nano-roughness on the wettability performance of microstructured metallic surface using direct laser interference patterning[J]. Materials, 12, 2737(2019).

    [46] Gräf S. Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications[J]. Advanced Optical Technologies, 9, 11-39(2020).

    [47] Sipe J E, Young J F, Preston J S et al. Laser-induced periodic surface structure. I. Theory[J]. Physical Review B, 27, 1141-1154(1983).

    [48] Skolski J Z P, Römer G R B E, Vincenc Obona J et al. Modeling laser-induced periodic surface structures: finite-difference time-domain feedback simulations[J]. Journal of Applied Physics, 115, 103102(2014).

    [49] Reif J, Varlamova O, Varlamov S et al. The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation[J]. Applied Physics A, 104, 969-973(2011).

    [50] Miyaji G, Miyazaki K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses[J]. Optics Express, 16, 16265-16271(2008).

    [51] Dufft D, Rosenfeld A, Das S K et al. Femtosecond laser-induced periodic surface structures revisited: a comparative study on ZnO[J]. Journal of Applied Physics, 105, 034908(2009).

    [52] Bonse J, Rosenfeld A, Krüger J. Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures[J]. Applied Surface Science, 257, 5420-5423(2011).

    [53] Milles S, Soldera M, Kuntze T et al. Characterization of self-cleaning properties on superhydrophobic aluminum surfaces fabricated by direct laser writing and direct laser interference patterning[J]. Applied Surface Science, 525, 146518(2020).

    [54] Zhou L, Xu H J, Gong S K et al. Research of aircraft icing characteristics and anti-icing and de-icing technology[J]. China Safety Science Journal (CSSJ), 20, 105-110(2010).

    [55] Piscitelli F, Chiariello A, Dabkowski D et al. Superhydrophobic coatings as anti-icing systems for small aircraft[J]. Aerospace, 7, 2(2020).

    [56] Pan R, Zhang H J, Zhong M L. Ultrafast laser hybrid fabrication and ice-resistance performance of a triple-scale micro/nano superhydrophobic surface[J]. Chinese Journal of Lasers, 48, 0202009(2021).

    [57] Yu Z, Zhang W J, Hu J. Micromachining of titanium alloy implant by picosecond laser surface texturing and alloy biocompatibility[J]. Chinese Journal of Lasers, 44, 0102014(2017).

    [58] Yan D F, Liu Z A, Pan W H et al. Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J]. Surface Technology, 50, 1-19(2021).

    [59] Seddighi M, Hejazi S M. Water-oil separation performance of technical textiles used for marine pollution disasters[J]. Marine Pollution Bulletin, 96, 286-293(2015).

    Xin Zhao, Chengchao Huang, Meng Li, Haodong Zhao, Huarong Yang. Application and Research Status of Laser Structured Superhydrophobic Surfaces[J]. Laser & Optoelectronics Progress, 2022, 59(19): 1900008
    Download Citation