• Photonics Research
  • Vol. 8, Issue 5, 729 (2020)
Jiali Liao1、2、5、*, Yang Gao3, Yanling Sun1, Lin Ma1, Zhenzhong Lu1, and Xiujian Li4、6、*
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Hefei 230037, China
  • 3Xi’an Research Institute of High Technology, Xi’an 710025, China
  • 4College of Liberal Arts and Sciences, National University of Defense Technology, Changsha 410073, China
  • 5e-mail: liaojiali@xidian.edu.cn
  • 6e-mail: xjli@nudt.edu.cn
  • show less
    DOI: 10.1364/PRJ.381371 Cite this Article Set citation alerts
    Jiali Liao, Yang Gao, Yanling Sun, Lin Ma, Zhenzhong Lu, Xiujian Li. Effects of third-order dispersion on temporal soliton compression in dispersion-engineered silicon photonic crystal waveguides[J]. Photonics Research, 2020, 8(5): 729 Copy Citation Text show less
    References

    [1] E. Timurdogan, C. V. Poulton, M. J. Byrd, M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 11, 200-206(2017).

    [2] C. Husko, P. Colman, S. Combri, A. De Rossi, C. W. Wong. Effect of multiphoton absorption and free carriers in slow-light photonic crystal waveguides. Opt. Lett., 36, 2239-2241(2011).

    [3] C. Monat, B. Corcoran, D. Pudo, M. Ebnali-Heidari, C. Grillet, M. D. Pelusi, D. J. Moss, B. J. Eggleton, T. P. White, L. O’Faolain. Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J. Sel. Top. Quantum Electron., 16, 344-356(2010).

    [4] W. Ding, A. V. Gorbach, W. J. Wadswarth, J. C. Knight, D. V. Skryabin, M. J. Strain, M. Sorel, R. M. De La Rue. Time and frequency domain measurements of solitons in subwavelength silicon waveguides using a cross-correlation technique. Opt. Express, 18, 26625-26630(2010).

    [5] K. Inoue, H. Oda, N. Ikeda, K. Asakawa. Enhanced third-order nonlinear effects in slow-light photonic-crystal slab waveguides of line-defect. Opt. Express, 17, 7206-7216(2009).

    [6] A. Blanco-Redondo, C. Husko, D. Eades, Y. Zhang, J. Li, T. F. Krauss, B. J. Eggleton. Observation of soliton compression in silicon photonic crystals. Nat. Commun., 5, 3160(2014).

    [7] X. Li, J. Liao, Y. Nie, M. Marko, H. Jia, J. Liu, X. Wang, C. W. Wong. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG. Opt. Express, 23, 10282-10292(2015).

    [8] M. Fu, J. Liao, Z. Shao, M. Marko, Y. Zhang, X. Wang, X. Li. Finely engineered slow light photonic crystal waveguides for efficient wideband wavelength-independent higher-order temporal solitons. Appl. Opt., 55, 3740-3745(2016).

    [9] M. Marko, X. Li, J. Zheng. Soliton propagation with cross-phase modulation in silicon photonic crystal waveguides. J. Opt. Soc. Am. B, 30, 2100-2106(2013).

    [10] J. Li, L. O’Faolain, T. F. Krauss. Four-wave mixing in slow light photonic crystal waveguides with very high group index. Opt. Express, 20, 17474-17479(2012).

    [11] J. F. McMillan, M. Yu, D. L. Kwong, C. W. Wong. Observation of four-wave mixing in slow-light silicon photonic crystal waveguides. Opt. Express, 18, 15484-15497(2010).

    [12] C. Monat, M. Ebnali-Heidari, C. Grillet, B. Corcoran, B. J. Eggleton, T. P. White, L. O’Faolain, J. Li, T. F. Krauss. Four-wave mixing in slow light engineered silicon photonic crystal waveguides. Opt. Express, 18, 22915-22927(2010).

    [13] A. Singh. Influence of carrier transport on Raman amplification in silicon waveguides. Opt. Express, 18, 12569-12580(2010).

    [14] I. D. Rukhlenko, M. Premaratne, C. Dissanayake, G. P. Agrawal. Continuous-wave Raman amplification in silicon waveguides: beyond the undepleted pump approximation. Opt. Lett., 34, 536-538(2009).

    [15] R. Espinola, J. Dadap, R. J. Osgood, S. McNab, Y. Vlasov. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express, 12, 3713-3718(2004).

    [16] S. Abaslou, V. Ahmadi. Compact all-optical switch for WDM networks based on Raman effect in silicon nanowavegide. Opt. Lett., 37, 40-42(2012).

    [17] J. Y. Lee, L. Yin, G. P. Agrawal, P. M. Fauchet. Ultrafast optical switching based on nonlinear polarization rotation in silicon waveguides. Opt. Express, 18, 11514-11523(2010).

    [18] L. Yin, J. Zhang, P. M. Fauchet, G. P. Agrawal. Optical switching using nonlinear polarization rotation inside silicon waveguides. Opt. Lett., 34, 476-478(2009).

    [19] K. Y. Wang, K. G. Petrillo, M. A. Foster, A. C. Foster. Ultralow-power all-optical processing of high-speed data signals in deposited silicon waveguides. Opt. Express, 20, 24600-24606(2012).

    [20] T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, T. Baba. Silica-clad silicon photonic crystal waveguides for wideband dispersion-free slow light. J. Lightwave Technol., 33, 3034-3040(2015).

    [21] E. Sahin, A. Blanco-Redondo, P. Xing, D. K. T. Ng, C. E. Png, D. T. H. Tan, B. J. Eggleton. Bragg soliton fission: Bragg soliton compression and fission on CMOS-compatible ultra-silicon-rich nitride. Laser Photon. Rev., 13, 1970032(2019).

    [22] J. T. Mok, I. C. M. Littler, E. Tsoy, B. J. Eggleton. Soliton compression and pulse-train generation by use of microchip Q-switched pulses in Bragg gratings. Opt. Lett., 30, 2457-2459(2005).

    [23] B. J. Eggleton, C. Martijn de Sterke, R. E. Slusher. Bragg solitons in the nonlinear Schrödinger limit: experiment and theory. J. Opt. Soc. Am. B, 16, 587-599(1999).

    [24] B. J. Eggleton, R. E. Slusher, C. Martijn de Sterke, P. A. Krug, J. E. Sipe. Bragg grating solitons. Phys. Rev. Lett., 76, 1627-1630(1996).

    [25] P. Colman, C. Husko, S. Combrié, I. Sagnes, C. W. Wong, A. D. Rossi. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photonics, 4, 862-868(2010).

    [26] X. Zeng, H. Guo, B. Zhou, M. Bache. Soliton compression to few-cycle pulses with a high quality factor by engineering cascaded quadratic nonlinearities. Opt. Express, 20, 27071-27082(2012).

    [27] H. Guo, X. Zeng, B. Zhou, M. Bache. Few-cycle solitons and supercontinuum generation with cascaded quadratic nonlinearities in unpoled lithium niobate ridge waveguides. Opt. Lett., 39, 1105-1108(2014).

    [28] M. Bache, H. Guo, B. Zhou. Generating mid-IR octave-spanning supercontinua and few-cycle pulses with solitons in phase-mismatched quadratic nonlinear crystals. Opt. Mater. Express, 3, 1647-1657(2013).

    [29] H. Guo, B. Zhou, X. Zeng, M. Bache. Highly coherent mid-IR supercontinuum by self-defocusing solitons in lithium niobate waveguides with all-normal dispersion. Opt. Express, 22, 12211-12225(2014).

    [30] L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, S. R. Leone. Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime. Appl. Phys. B, 86, 561-566(2007).

    [31] J. Liao, M. Marko, X. Li, H. Jia, J. Liu, Y. Tan, J. Yang, Y. Zhang, W. Tang, M. Yu. Cross-correlation frequency-resolved optical gating and dynamics of temporal solitons in silicon nanowire waveguides. Opt. Lett., 38, 4401-4404(2013).

    [32] H. Zhou, M. Liao, S. W. Huang, L. Zhou, K. Qiu, C. W. Wong. Six-wave mixing induced by free-carrier plasma in silicon nanowire waveguides. Laser Photon. Rev., 10, 1054-1061(2016).

    [33] C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, T. F. Krauss. Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. Opt. Express, 17, 2944-2953(2009).

    [34] X. Chen, N. C. Panoiu, I. Hsieh, J. I. Dadap, R. M. Osgood. Third-order dispersion and ultrafast-pulse propagation in silicon wire waveguides. IEEE Photon. Technol. Lett., 18, 2617-2619(2006).

    [35] M. Marko, A. Veitia, X. Li, J. Zheng. Disturbance of soliton pulse propagation from higher-order dispersive waveguides. Appl. Opt., 52, 4813-4819(2013).

    [36] C. Husko, M. Wulf, S. Lefrancois, S. Combrié, G. Lehoucq, A. De Rossi, B. J. Eggleton, L. Kuipers. Free-carrier-induced soliton fission unveiled by in situ measurements in nanophotonic waveguides. Nat. Commun., 7, 11332(2016).

    [37] A. Blanco-Redondo, D. Eades, J. Li, S. Lefrancois, T. F. Krauss, B. J. Eggleton, C. Husko. Controlling free-carrier temporal effects in silicon by dispersion engineering. Optica, 1, 299-306(2014).

    [38] L. Yin, G. P. Agrawal. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Opt. Lett., 32, 2031-2033(2007).

    [39] H. Weber, R. Ludwig, S. Ferber, C. Schmidt-Langhorst, M. Kroh, V. Marembert, C. Boerner, C. Schubert. Ultrahigh-speed OTDM-transmission technology. J. Lightwave Technol., 24, 4616-4627(2006).

    [40] S. Yang, X. Bao. Generating a high-extinction-ratio pulse from a phase-modulated optical signal with a dispersion-imbalanced nonlinear loop mirror. Opt. Lett., 31, 1032-1034(2006).

    CLP Journals

    [1] Yang Gao, Jiali Liao, Jun Xu, Zhanrong Zhou. Sidelobe suppression for coherent beam combining with laser beams placed along a Fermat spiral[J]. Chinese Optics Letters, 2022, 20(2): 021405

    Jiali Liao, Yang Gao, Yanling Sun, Lin Ma, Zhenzhong Lu, Xiujian Li. Effects of third-order dispersion on temporal soliton compression in dispersion-engineered silicon photonic crystal waveguides[J]. Photonics Research, 2020, 8(5): 729
    Download Citation