• Photonics Research
  • Vol. 12, Issue 3, 598 (2024)
Qiang Zhang1、2、*, Peixiang Li1, Zhiyuan Gu1, Shaoding Liu1、2, and Zejun Duan1
Author Affiliations
  • 1College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
  • show less
    DOI: 10.1364/PRJ.508159 Cite this Article Set citation alerts
    Qiang Zhang, Peixiang Li, Zhiyuan Gu, Shaoding Liu, Zejun Duan. Indefinite metacavities coupled to a mirror: bound states in the continuum with anomalous resonance scaling[J]. Photonics Research, 2024, 12(3): 598 Copy Citation Text show less
    References

    [1] Y. M. Liu, X. Zhang. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev., 40, 2494-2507(2011).

    [2] N. I. Zheludev, Y. S. Kivshar. From metamaterials to metadevices. Nat. Mater., 11, 917-924(2012).

    [3] T. Koschny, C. M. Soukoulis, M. Wegener. Metamaterials in microwaves, optics, mechanics, thermodynamics, and transport. J. Opt., 19, 084005(2017).

    [4] P. T. Xie, Z. C. Shi, M. Feng. Recent advances in radio-frequency negative dielectric metamaterials by designing heterogeneous composites. Adv. Compos. Hybrid Mater., 5, 679-695(2022).

    [5] V. M. Shalaev. Optical negative-index metamaterials. Nat. Photonics, 1, 41-48(2007).

    [6] D. R. Smith, J. B. Pendry, M. C. K. Wiltshire. Metamaterials and negative refractive index. Science, 305, 788-792(2004).

    [7] P. Moitra, Y. M. Yang, Z. Anderson. Realization of an all-dielectric zero-index optical metamaterial. Nat. Photonics, 7, 791-795(2013).

    [8] N. Kinsey, C. DeValut, A. Boltasseva. Near-zero-index materials for photonics. Nat. Rev. Mater., 4, 742-760(2019).

    [9] K. Wang, S. H. Park, J. T. Zhu. Self-assembled colloidal nanopatterns toward unnatural optical meta-materials. Adv. Funct. Mater., 31, 2008246(2021).

    [10] X. F. Jing, Y. N. Xu, H. Y. Gan. High refractive index metamaterials by using higher order modes resonances of hollow cylindrical nanostructure in visible region. IEEE Access, 7, 144945(2019).

    [11] S. B. Glybovski, S. A. Tretyakov, P. A. Belov. Metasurfaces: from microwaves to visible. Phys. Rep., 634, 1-72(2016).

    [12] J. Kim, J. Seong, Y. Yang. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photon., 4, 024001(2022).

    [13] A. Poddubny, I. Iorsh, P. Belov. Hyperbolic metamaterials. Nat. Photonics, 7, 948-957(2013).

    [14] S. R. K. C. Indukuri, J. Bar-David, N. Mazurski. Ultrasmall mode volume hyperbolic nanocavities for enhanced light−matter interaction at the nanoscale. ACS Nano, 13, 11770-11780(2019).

    [15] D. Lu, J. J. Kan, E. E. Fullerton. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol., 9, 48-53(2014).

    [16] C. Guclu, T. S. Luk, G. T. Wang. Radiative emission enhancement using nano-antennas made of hyperbolic metamaterial resonators. Appl. Phys. Lett., 105, 123101(2014).

    [17] L. Lu, R. E. Simpson, S. K. Valiyaveedu. Active hyperbolic metamaterials: progress, materials and design. J. Opt., 20, 103001(2018).

    [18] P. Shekhar, J. Atkinson, Z. Jacob. Hyperbolic metamaterials: fundamentals and applications. Nano Convergence, 1, 14(2014).

    [19] L. Ferraria, C. Wub, D. Lepaged. Hyperbolic metamaterials and their applications. Prog. Quantum Electron., 40, 1-40(2015).

    [20] A. Aigner, J. M. Dawes, S. A. Maier. Nanophotonics shines light on hyperbolic metamaterials. Light Sci. Appl., 11, 9(2022).

    [21] J. Yao, X. D. Yang, X. B. Yin. Three-dimensional nanometer-scale optical cavities of indefinite medium. Proc. Natl. Acad. Sci. USA, 108, 11327-11331(2011).

    [22] X. D. Yang, J. Yao, J. Rho. Experimental realization of three-dimensional indefinite cavities at the nanoscale with anomalous scaling laws. Nat. Photonics, 6, 450-454(2012).

    [23] Y. Q. Zhao, A. Hubarevich, M. Iarossi. Hyperbolic nanoparticles on substrate with separate optical scattering and absorption resonances: a dual function platform for SERS and thermoplasmonics. Adv. Opt. Mater., 9, 2100888(2021).

    [24] H. F. Xu, Z. M. Zhu, J. C. Xue. Giant enhancements of high-order upconversion luminescence enabled by multiresonant hyperbolic metamaterials. Photon. Res., 9, 395-404(2021).

    [25] N. Maccaferri, A. Zilli, T. Isoniemi. Enhanced nonlinear emission from single multilayered metal−dielectric nanocavities resonating in the near-infrared. ACS Photon., 8, 512-520(2021).

    [26] Y. R. He, H. X. Deng, X. Y. Jiao. Infrared perfect absorber based on nanowire metamaterial cavities. Opt. Lett., 38, 1179-1181(2013).

    [27] D. X. Ji, H. M. Song, X. Zeng. Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep., 4, 4498(2014).

    [28] R. Chandrasekar, Z. X. Wang, X. G. Meng. Lasing action with gold nanorod hyperbolic metamaterials. ACS Photon., 4, 674-680(2017).

    [29] K.-C. Shen, C.-T. Ku, C. Hsieh. Deep-ultraviolet hyperbolic metacavity laser. Adv. Mater., 30, 1706918(2018).

    [30] Z. W. Guo, H. T. Jiang, H. Chen. Zero-index and hyperbolic metacavities: fundamentals and applications. J. Phys. D, 55, 083001(2022).

    [31] R. Y. Liu, C. L. Zhou, Y. Zhang. Near-field radiative heat transfer in hyperbolic materials. Int. J. Extrem. Manuf., 4, 032002(2022).

    [32] B. A. Liu, S. Shen. Broadband near-field radiative thermal emitter/absorber based on hyperbolic metamaterials: direct numerical simulation by the Wiener chaos expansion method. Phys. Rev. B, 87, 115403(2013).

    [33] S. R. K. C. Indukuri, C. Frydendahl, J. Bar-David. WS2 monolayers coupled to hyperbolic metamaterial nanoantennas: broad implications for light-matter-interaction applications. ACS Appl. Nano Mater., 3, 10226-10233(2020).

    [34] X. T. Yu, Y. F. Yuan, J. H. Xu. Strong coupling in microcavity structures: principle, design, and practical application. Laser Photon. Rev., 13, 1800219(2019).

    [35] C. W. Hsu, B. Zhen, A. D. Stone. Bound states in the continuum. Nat. Rev. Mater., 1, 16048(2016).

    [36] K. Koshelev, A. Bogdanov, Y. Kivshar. Meta-optics and bound states in the continuum. Sci. Bull., 64, 836-842(2019).

    [37] S. I. Azzam, A. V. Kildishev. Photonic bound states in the continuum: from basics to applications. Adv. Opt. Mater., 9, 2001469(2020).

    [38] K. Koshelev, S. Lepeshov, M. K. Liu. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett., 121, 193903(2018).

    [39] F. Wu, J. J. Wu, Z. W. Guo. Giant enhancement of the Goos-Hänchen shift assisted by quasibound states in the continuum. Phys. Rev. Appl., 12, 014028(2019).

    [40] F. Wu, T. T. Liu, Y. Long. Giant photonic spin Hall effect empowered by polarization-dependent quasibound states in the continuum in compound grating waveguide structures. Phys. Rev. B, 107, 165428(2023).

    [41] X. Y. Zong, L. X. Li, Y. F. Liu. Bound states in the continuum enabling ultra-narrowband perfect absorption. New J. Phys., 25, 023020(2023).

    [42] G. C. Yang, S. U. Dev, M. S. Allen. Optical bound states in the continuum enabled by magnetic resonances coupled to a mirror. Nano Lett., 22, 2001-2008(2022).

    [43] Z. Wang, Y. Liang, J. Q. Qu. Plasmonic bound states in the continuum for unpolarized weak spatially coherent light. Photon. Res., 11, 260-269(2023).

    [44] X. Xiao, Y. X. Lu, J. Y. Jiang. Manipulation of optical bound states in the continuum in a metal-dielectric hybrid nanostructure. Photon. Res., 10, 2526-2531(2022).

    [45] L. D. Zhou, M. Panmai, S. L. Li. Lighting up Si nanoparticle arrays by exploiting the bound states in the continuum formed in a Si/Au hybrid nanostructure. ACS Photon., 9, 2991-2999(2022).

    [46] P. B. Johnson, R. W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [47] E. X. Perez, L. Shi, U. Tuzer. Mirror-image-induced magnetic modes. ACS Nano, 7, 664-668(2013).

    [48] P. Nordlander, C. Oubre, E. Prodan. Plasmon hybridization in nanoparticle dimers. Nano Lett., 4, 899-903(2004).

    [49] J. Yoon, K. H. Seol, S. H. Song. Critical coupling in dissipative surface-plasmon resonators with multiple ports. Opt. Express, 18, 25702-25711(2010).

    [50] T. Tumkur, G. Zhu, P. Black. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial. Appl. Phys. Lett., 99, 151115(2011).

    [51] I. D. Leon, P. Berini. Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics, 4, 382-387(2010).

    [52] X. Ni, S. Ishii, M. D. Thoreson. Loss-compensated and active hyperbolic metamaterials. Opt. Express, 19, 25242-25254(2011).

    [53] Y. Y. Gonga, J. Vučković. Design of plasmon cavities for solid-state cavity quantum electrodynamics applications. Appl. Phys. Lett., 90, 033113(2007).

    [54] J. Kim, V. P. Drachev, Z. Jacob. Improving the radiative decay rate for dye molecules with hyperbolic metamaterials. Opt. Express, 20, 8100-8116(2012).

    [55] O. Kidwai, S. V. Zhukovsky, J. E. Sipe. Effective-medium approach to planar multilayer hyperbolic metamaterials: strengths and limitations. Phys. Rev. A, 85, 053842(2012).

    Qiang Zhang, Peixiang Li, Zhiyuan Gu, Shaoding Liu, Zejun Duan. Indefinite metacavities coupled to a mirror: bound states in the continuum with anomalous resonance scaling[J]. Photonics Research, 2024, 12(3): 598
    Download Citation