• Photonics Research
  • Vol. 7, Issue 7, 815 (2019)
Huan Jiang1、2, Sajid Choudhury2, Zhaxylyk A. Kudyshev2, Di Wang2, Ludmila J. Prokopeva2, Peng Xiao3, Yongyuan Jiang1、4、5、6、7, and Alexander V. Kildishev2、*
Author Affiliations
  • 1Institute of Modern Optics, Department of Physics, Harbin Institute of Technology, Harbin 150001, China
  • 2School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
  • 3School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China
  • 4Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
  • 5Key Laboratory of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin 150001, China
  • 6Key Laboratory of Micro-Nano Optoelectronic Information System of Ministry of Industry and Information Technology, Harbin 150001, China
  • 7e-mail: jiangyy@hit.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000815 Cite this Article Set citation alerts
    Huan Jiang, Sajid Choudhury, Zhaxylyk A. Kudyshev, Di Wang, Ludmila J. Prokopeva, Peng Xiao, Yongyuan Jiang, Alexander V. Kildishev. Enhancing sensitivity to ambient refractive index with tunable few-layer graphene/hBN nanoribbons[J]. Photonics Research, 2019, 7(7): 815 Copy Citation Text show less
    References

    [1] Y. Zhang, T. Li, B. Zeng, H. Zhang, H. Lv, X. Huang, W. Zhang, A. K. Azad. A graphene based tunable terahertz sensor with double Fano resonances. Nanoscale, 7, 12682-12688(2015).

    [2] P. R. Griffiths, J. A. De Haseth. Fourier Transform Infrared Spectrometry, 171(2007).

    [3] D. Rodrigo, O. Limaj, D. Janner, D. Etezadi, F. J. García De Abajo, V. Pruneri, H. Altug. Mid-infrared plasmonic biosensing with graphene. Science, 349, 165-168(2015).

    [4] C. Kang, S. M. Weiss. Photonic crystal with multiple-hole defect for sensor applications. Opt. Express, 16, 18188-18193(2008).

    [5] L. Shi, A. Kabashin, M. Skorobogatiy. Spectral, amplitude and phase sensitivity of a plasmonic gas sensor in a metallic photonic crystal slab geometry: comparison of the near and far field phase detection strategies. Sens. Actuators B Chem., 143, 76-86(2009).

    [6] A. V. Kabashin, S. Patskovsky, A. N. Grigorenko. Phase and amplitude sensitivities in surface plasmon resonance bio and chemical sensing. Opt. Express, 17, 21191-21204(2009).

    [7] Y. Zhao, R. Lv, Y. Zhang, Q. Wang. Novel optical devices based on the transmission properties of magnetic fluid and their characteristics. Opt. Lasers Eng., 50, 1177-1184(2012).

    [8] I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano, 5, 8167-8174(2011).

    [9] M. N. Ng, Z. Chen, K. S. Chiang. Temperature compensation of long-period fiber grating for refractive-index sensing with bending effect. IEEE Photon. Technol. Lett., 14, 361-362(2002).

    [10] M. Turduev, I. H. Giden, C. Babayiğit, Z. Hayran, E. Bor, Ç. Boztuğ, H. Kurt, K. Staliunas. Mid-infrared T-shaped photonic crystal waveguide for optical refractive index sensing. Sens. Actuators B Chem., 245, 765-773(2017).

    [11] X. Wu, Q. Chen, P. Xu, L. Tong, X. Fan. Refractive index sensing based on semiconductor nanowire lasers. Appl. Phys. Lett., 111, 031112(2017).

    [12] R. Bernini, G. Persichetti, E. Catalano, L. Zeni, A. Minardo. Refractive index sensing by Brillouin scattering in side-polished optical fibers. Opt. Lett., 43, 2280-2283(2018).

    [13] C. H. Chen, T. C. Tsao, J. L. Tang, W. Te Wu. A multi-D-shaped optical fiber for refractive index sensing. Sensors, 10, 4794-4804(2010).

    [14] S. Zou, F. Wang, R. Liang, L. Xiao, M. Hu. A nanoscale refractive index sensor based on asymmetric plasmonic waveguide with a ring resonator : a review. IEEE Sens. J., 15, 646-650(2015).

    [15] L. Kassa-Baghdouche, E. Cassan. Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides. Photon. Nanostr. Fundam. Appl., 28, 32-36(2018).

    [16] X. Chen, Y. Wang, Y. Xiang, G. Jiang, L. Wang, Q. Bao, H. Zhang, Y. Liu, S. Wen, D. Fan. A broadband optical modulator based on a graphene hybrid plasmonic waveguide. J. Lightwave Technol., 34, 4948-4953(2016).

    [17] P. Liu, H. Huang, T. Cao, X. Liu, Z. Qi, Z. Tang, J. Zhang. An ultra-low detection-limit optofluidic biosensor with integrated dual-channel Fabry-Pérot cavity. Appl. Phys. Lett., 102, 163701(2013).

    [18] P. Liu, H. Huang, T. Cao, Z. Tang, X. Liu, Z. Qi, M. Ren, H. Wu. An optofluidics biosensor consisted of high-finesse Fabry-Pérot resonator and micro-fluidic channel. Appl. Phys. Lett., 100, 233705(2012).

    [19] R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, W. Zhang. Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces. Appl. Phys. Lett., 105, 171101(2014).

    [20] M. V. Hernandez-Arriaga, M. A. Bello-Jimenez, A. Rodriguez-Cobos, R. Lopez-Estopier, M. V. Andres. High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers. IEEE Sens. J., 17, 333-339(2017).

    [21] T. Cao, L. Zhang, Z. P. Xiao, H. Huang. Enhancement and tunability of Fano resonance in symmetric multilayer metamaterials at optical regime. J. Phys. D, 46, 395103(2013).

    [22] C. Wei, L. Zhang, T. Cao. Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime. Opt. Express, 21, 1259-1263(2014).

    [23] S. J. M. Rao, M. Islam, G. Kumar, B. P. Pal, D. R. Chowdhury. Single split gap resonator based terahertz metamaterials for refractive index sensing. Proc. SPIE, 10531, 105311K(2018).

    [24] J. Wu, C. Zhou, J. Yu, H. Cao, S. Li, W. Jia. Design of infrared surface plasmon resonance sensors based on graphene ribbon arrays. Opt. Laser Technol., 59, 99-103(2014).

    [25] F. Fan, S. Chen, X.-H. Wang, P. Wu, S.-J. Chang. Terahertz refractive index sensing based on photonic column array. IEEE Photon. Technol. Lett., 27, 478-481(2015).

    [26] M. D. Susman, A. Vaskevich, I. Rubinstein. Refractive index sensing using visible electromagnetic resonances of supported Cu2O particles. ACS Appl. Mater. Interfaces, 9, 8177-8186(2017).

    [27] B. Gallinet, O. J. F. Martin. Refractive index sensing with subradiant modes: a framework to reduce losses in plasmonic nanostructures. ACS Nano, 7, 6978-6987(2013).

    [28] Y. Q. Kang, A. François, N. Riesen, T. M. Monro. Mode-splitting for refractive index sensing in fluorescent whispering gallery mode microspheres with broken symmetry. Sensors, 18, 2987(2018).

    [29] P. Wan, X. Wen, C. Sun, B. K. Chandran, H. Zhang, X. M. Sun, X. Chen. Flexible transparent films based on nanocomposite networks of polyaniline and carbon nanotubes for high-performance gas sensing. Small, 11, 5409-5415(2015).

    [30] T. Wang, Y. Guo, P. Wan, H. Zhang, X. Chen, X. Sun. Flexible transparent electronic gas sensors. Small, 12, 3748-3756(2016).

    [31] I. M. Pryce, Y. A. Kelaita, K. Aydin, H. A. Atwater. Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano, 5, 8167-8174(2011).

    [32] T. Cao, Y. Li, X. Zhang, Y. Zou. Theoretical study of tunable chirality from graphene integrated achiral metasurfaces. Photon. Res., 5, 441-449(2017).

    [33] T. Cao, C.-W. Wei, L.-B. Mao, S. Wang. Tuning of giant 2D-chiroptical response using achiral metasurface integrated with graphene. Opt. Express, 23, 18620-18629(2015).

    [34] C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Y. Yi. A tunable plasmonic refractive index sensor with nanoring-strip graphene arrays. Sensors, 18, 4489(2018).

    [35] A. Dolatabady, S. Asgari, N. Granpayeh. Tunable mid-infrared nanoscale graphene-based refractive index sensor. IEEE Sens. J., 18, 569-574(2017).

    [36] T. Wenger, G. Viola, J. Kinaret, M. Fogelström, P. Tassin. High-sensitivity plasmonic refractive index sensing using graphene. 2D Mater., 4, 025103(2017).

    [37] M. Pan, Z. Liang, Y. Wang, Y. Chen. Tunable angle-independent refractive index sensor based on Fano resonance in integrated metal and graphene nanoribbons. Sci. Rep., 6, 1(2016).

    [38] Q. Yang, L. Qin, G. Cao, C. Zhang, X. Li. Refractive index sensor based on graphene-coated photonic surface-wave resonance. Opt. Lett., 43, 639-642(2018).

    [39] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol., 5, 722-726(2010).

    [40] P. J. Zomer, S. P. Dash, N. Tombros, B. J. Van Wees. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett., 99, 232104(2011).

    [41] N. K. Emani, D. Wang, T. Chung, L. J. Prokopeva, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, A. Boltasseva. Plasmon resonance in multilayer graphene nanoribbons. Laser Photon. Rev., 9, 650-655(2015).

    [42] H.-S. Chu, C. How Gan. Active plasmonic switching at mid-infrared wavelengths with graphene ribbon arrays. Appl. Phys. Lett., 102, 231107(2013).

    [43] H. H. Li. Refractive index of alkaline earth halides and its wavelength and temperature derivatives. J. Phys. Chem. Ref. Data, 9, 161-290(1980).

    [44] E. D. Palik. Handbook of Optical Constants of Solids(1998).

    [45] L. J. Prokopeva, Z. Kudyshev, A. V. Kildishev. Optical dispersion models for graphene: integration-free formulations. 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Metamaterials, 178-180(2016).

    [46] N. K. Emani, A. V. Kildishev, V. M. Shalaev, A. Boltasseva. Graphene: a dynamic platform for electrical control of plasmonic resonance. Nanophotonics, 4, 214-223(2015).

    [47] L. A. Falkovsky, S. S. Pershoguba. Optical far-infrared properties of a graphene monolayer and multilayer. Phys. Rev. B, 76, 153410(2007).

    [48] A. Kumar, T. Low, K. H. Fung, P. Avouris, N. X. Fang. Tunable light-matter interaction and the role of hyperbolicity in graphene-hBN system. Nano Lett., 15, 3172-3180(2015).

    [49] M. Jablan, H. Buljan, M. Soljačić. Plasmonics in graphene at infrared frequencies. Phys. Rev. B, 80, 245435(2009).

    [50] M. Schmitz, S. Engels, L. Banszerus, K. Watanabe, T. Taniguchi, C. Stampfer, B. Beschoten. High mobility dry-transferred CVD bilayer graphene. Appl. Phys. Lett., 110, 263110(2017).

    [51] M. Lim, S. S. Lee, B. J. Lee. Effects of multilayered graphene on the performance of near-field thermophotovoltaic system at longer vacuum gap distances. J. Quant. Spectrosc. Radiat. Transfer, 197, 84-94(2017).

    [52] Y. Cai, L. Zhang, Q. Zeng, L. Cheng, Y. Xu. Infrared reflectance spectrum of BN calculated from first principles. Solid State Commun., 141, 262-266(2007).

    [53] G. C. Schatz, L. J. Sherry, R. C. Jin, C. A. Mirkin, R. P. Van Duyne. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett., 6, 2060-2065(2006).

    [54] Y. Li, H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, P. Avouris. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers. Nano Lett., 14, 1573-1577(2014).

    [55] K. S. Kölbig. Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Commun., 4, 221-226(1972).

    [56] J. A. Leon, M. A. P. da Silva, N. C. Mamani, L. E. Gomez, A. Rahim, G. M. Gusev. Transferring few-layer graphene sheets on hexagonal boron nitride substrates for fabrication of graphene devices. Graphene, 3, 25-35(2014).

    [57] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves. Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 335, 947-950(2012).

    [58] J. Park, H. Kang, D. Chung, J. Kim, J.-G. Kim, Y. Yun, Y. H. Lee, D. Suh. Dual-gated BN-sandwiched multilayer graphene field-effect transistor fabricated by stamping transfer method and self-aligned contact. Curr. Appl. Phys., 15, 1184-1187(2015).

    CLP Journals

    [1] Zijian Cui, Yue Wang, Yongqiang Shi, Yongqiang Zhu, Dachi Zhang, Zhiqi Hong, Xuping Feng. Significant sensing performance of an all-silicon terahertz metasurface chip for Bacillus thuringiensis Cry1Ac protein[J]. Photonics Research, 2022, 10(3): 740

    Huan Jiang, Sajid Choudhury, Zhaxylyk A. Kudyshev, Di Wang, Ludmila J. Prokopeva, Peng Xiao, Yongyuan Jiang, Alexander V. Kildishev. Enhancing sensitivity to ambient refractive index with tunable few-layer graphene/hBN nanoribbons[J]. Photonics Research, 2019, 7(7): 815
    Download Citation