• Acta Optica Sinica
  • Vol. 42, Issue 16, 1616001 (2022)
Peiru Zhang, Huan Liu*, Jiaxing Hu, and Lier Deng
Author Affiliations
  • School of Opto-Electronic Engineering, Xi'an Technological University, Xi'an 710021, Shaanxi , China
  • show less
    DOI: 10.3788/AOS202242.1616001 Cite this Article Set citation alerts
    Peiru Zhang, Huan Liu, Jiaxing Hu, Lier Deng. Synthesis of Monolayer MoS2(1-x)Se2x Alloy and Photoelectric Properties of MoS2(1-x)Se2x (x=0. 25) Field-Effect Transistor[J]. Acta Optica Sinica, 2022, 42(16): 1616001 Copy Citation Text show less
    Growth diagram of monolayer MoS2(1-x)Se2x prepared by chemical vapor deposition
    Fig. 1. Growth diagram of monolayer MoS2(1-x)Se2x prepared by chemical vapor deposition
    Morphology of monolayer MoS2(1-x)Se2x alloy grown by different mSe/mS under optical microscope. (a) mSe/mS = 1/11; (b) mSe/mS = 1/5; (c) mSe/mS = 1/3; (d) mSe/mS = 1/2; (e) mSe/mS = 5/7; (f) mSe/mS = 1/1
    Fig. 2. Morphology of monolayer MoS2(1-x)Se2x alloy grown by different mSe/mS under optical microscope. (a) mSe/mS = 1/11; (b) mSe/mS = 1/5; (c) mSe/mS = 1/3; (d) mSe/mS = 1/2; (e) mSe/mS = 5/7; (f) mSe/mS = 1/1
    AFM image at junction of monolayer MoS2(1-x)Se2x and SiO2/Si substrate
    Fig. 3. AFM image at junction of monolayer MoS2(1-x)Se2x and SiO2/Si substrate
    Relationship between size of monolayer MoS2(1-x)Se2x and mSe/mS
    Fig. 4. Relationship between size of monolayer MoS2(1-x)Se2x and mSe/mS
    SEM-EDS images of monolayer MoS2(1-x)Se2x alloy with different components. (a) x=0.23; (b) x=0.24; (c) x=0.25; (d) x= 0.40; (e) x=0.41; (f) x=0.42
    Fig. 5. SEM-EDS images of monolayer MoS2(1-x)Se2x alloy with different components. (a) x=0.23; (b) x=0.24; (c) x=0.25; (d) x= 0.40; (e) x=0.41; (f) x=0.42
    Relationship between x component value and mSe/mS in monolayer MoS2(1-x)Se2x
    Fig. 6. Relationship between x component value and mSe/mS in monolayer MoS2(1-x)Se2x
    Raman spectra and statistical analysis of Raman peak positions of monolayer MoS2(1-x)Se2x alloy with different components. (a) Raman spectra; (b) statistical analysis of Raman peak positions
    Fig. 7. Raman spectra and statistical analysis of Raman peak positions of monolayer MoS2(1-x)Se2x alloy with different components. (a) Raman spectra; (b) statistical analysis of Raman peak positions
    PL spectra, statistical analysis of peak positions and deviation diagram of band gap of monolayer MoS2(1-x)Se2x alloy with different components. (a) PL spectra of monolayer MoS2(1-x)Se2x alloy with different components; (b) relationship between wavelength position of PL peak of each component alloy and component value x; (c) deviation diagram between band gap value converted by PL spectrum and band gap value calculated according to band gap relationship
    Fig. 8. PL spectra, statistical analysis of peak positions and deviation diagram of band gap of monolayer MoS2(1-x)Se2x alloy with different components. (a) PL spectra of monolayer MoS2(1-x)Se2x alloy with different components; (b) relationship between wavelength position of PL peak of each component alloy and component value x; (c) deviation diagram between band gap value converted by PL spectrum and band gap value calculated according to band gap relationship
    Device structure and photoelectric test diagram of monolayer MoS2(1-x)Se2x FET. (a) Structural diagram of device; (b) I-V curve of monolayer MoS2(1-x)Se2x (x=0.25) device under darkness; (c) photoresponse current curves of monolayer MoS2(1-x)Se2x (x= 0.25) device excited by 520, 780, 980 nm laser; (d) enlarged view of photoresponse current curves at arrow mark in Fig. 9(c)
    Fig. 9. Device structure and photoelectric test diagram of monolayer MoS2(1-x)Se2x FET. (a) Structural diagram of device; (b) I-V curve of monolayer MoS2(1-x)Se2x (x=0.25) device under darkness; (c) photoresponse current curves of monolayer MoS2(1-x)Se2x (x= 0.25) device excited by 520, 780, 980 nm laser; (d) enlarged view of photoresponse current curves at arrow mark in Fig. 9(c)
    Mass of MoO3 /mgMass of NaCl /mgMass of Se /mgMass of S /mgmSe/mSTemperature /℃
    245551/11750
    2410501/5750
    2415451/3750
    2420401/2750
    2425355/7750
    2430301/1750
    Table 1. Experimental detailed growth parameters
    x component valueAg1(Mo-Se)/cm-1E2g1(Mo-Se)/cm-1E2g1(Mo-S)/cm-1Ag1(Mo-S)/cm-1

    PL peak

    position /nm

    Literature
    0.23271(272)375(373)400(399)709(708)18
    0.24272375399716
    0.25272(270)374(372)399(401)72919
    0.40272373399734
    0.41271(268)372(374)399(399)737(735)24
    0.42270(274)371(376)399(400)739(731)28
    Table 2. Comparison of Raman characteristic peaks and PL emission peak positions of monolayer alloy with different components with literature results
    FET

    Mobility /

    (cm2·V-1·s-1

    Response range /nmResponsity /(A·W-1

    Detectivity /

    (cm·Hz1/2·W-1

    Response time /sLiterature
    MoS2(1-xSe2xx=0.15)0.1014
    MoS2(1-xSe2xx=0.25)0.1015
    MoS2(1-xSe2xx=0.25)520-9800.945.32×10100.008This work
    MoS2(1-xSe2xx=0.30)0.4014
    MoS2(1-xSe2xx=0.31)0.0215
    MoS2(1-xSe2xx=0.43)0.4516
    MoS2(1-xSe2xx=0.65)3.7217
    MoS2(1-xSe2xx=0.74)0.0618
    Table 3. Comparison between performance test results of FET prepared in this paper and test results in literatures
    Peiru Zhang, Huan Liu, Jiaxing Hu, Lier Deng. Synthesis of Monolayer MoS2(1-x)Se2x Alloy and Photoelectric Properties of MoS2(1-x)Se2x (x=0. 25) Field-Effect Transistor[J]. Acta Optica Sinica, 2022, 42(16): 1616001
    Download Citation