• Opto-Electronic Engineering
  • Vol. 51, Issue 3, 230317-1 (2024)
Huaiyu Cai1,2, Zhaoqian Yang1,2, Ziyang Cui1,2, Yi Wang1,2, and Xiaodong Chen1,2,*
Author Affiliations
  • 1School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
  • 2Key Laboratory of Optoelectronic Information Technology Ministry of Education, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.12086/oee.2024.230317 Cite this Article
    Huaiyu Cai, Zhaoqian Yang, Ziyang Cui, Yi Wang, Xiaodong Chen. Image-guided and point cloud space-constrained method for detection and localization of abandoned objects on the road[J]. Opto-Electronic Engineering, 2024, 51(3): 230317-1 Copy Citation Text show less
    References

    [1] W Liu, D Anguelov, D Erhan et al. SSD: single shot multibox detector, 21-37(2016). https://doi.org/10.1007/978-3-319-46448-0_2

    [2] T Y Lin, P Goyal, R Girshick et al. Focal loss for dense object detection, 2999-3007(2017). https://doi.org/10.1109/ICCV.2017.324

    [3] N Carion, F Massa, G Synnaeve et al. End-to-end object detection with transformers, 213-229(2020). https://doi.org/10.1007/978-3-030-58452-8_13

    [4] A Bochkovskiy, C Y Wang, H Y M Liao. YOLOv4: optimal speed and accuracy of object detection(2020). https://doi.org/10.48550/arXiv.2004.10934

    [5] J Redmon, A Farhadi. YOLOv3: an Incremental Improvement(2018). https://doi.org/10.48550/arXiv.1804.02767

    [6] C Y Li, L L Li, H L Jiang et al. YOLOv6: a single-stage object detection framework for industrial applications(2022). https://doi.org/10.48550/arXiv.2209.02976

    [7] S Q Ren, K M He, R Girshick et al. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell, 39, 1137-1149(2017).

    [8] K M He, G Gkioxari, P Dollár et al. Mask R-CNN, 2980-2988(2017). https://doi.org/10.1109/ICCV.2017.322

    [9] Y Jin, R Zhang, D Yin. Object detection for small pixel in urban roads videos. Opto-Electron Eng, 46, 190053(2019).

    [10] R Q Charles, S Hao, K C Mo et al. PointNet: deep learning on point sets for 3D classification and segmentation, 77-85(2017). https://doi.org/10.1109/CVPR.2017.16

    [11] C R Qi, L Yi, H Su et al. PointNet++: deep hierarchical feature learning on point sets in a metric space, 5105-5114(2017). https://doi.org/10.5555/3295222.3295263

    [12] G C Qian, Y C Li, H W Peng et al. PointNeXt: Revisiting pointnet++ with improved training and scaling strategies, 23192-23204(2022).

    [13] C R Qi, W Liu, C X Wu et al. Frustum PointNets for 3D object detection from RGB-D data, 918-927(2018). https://doi.org/10.1109/CVPR.2018.00102

    [14] S Vora, A H Lang, B Helou et al. PointPainting: sequential fusion for 3D object detection, 4603-4611(2020). https://doi.org/10.1109/CVPR42600.2020.00466

    [15] H L Liang, H Y Cai, B C Liu et al. Road falling objects detection algorithm based on image and point cloud fusion. Laser Optoelectron Prog, 60, 1010001(2023).

    [16] X Y Zheng, J Z Lai, P Lv et al. Object detection and positioning method based on infrared vision/lidar fusion. Navig Position Timing, 8, 34-41(2021).

    [17] W S Fan, J Z Lai, P Lv et al. Vision/lidar object tracking and localization method based on improved DeepSORT. Navig Position Timing, 9, 77-84(2022).

    [18] C Y Wang, A Bochkovskiy, H Y M Liao. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, 7464-7475(2023). https://doi.org/10.1109/CVPR52729.2023.00721

    [19] W M Zhang, J B Qi, P Wan et al. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens, 8, 501(2016).

    [20] J K Huang, J W Grizzle. Improvements to target-based 3D LiDAR to camera calibration. IEEE Access, 8, 134101-134110(2020).

    [21] P Sun, H Kretzschmar, X Dotiwalla et al. Scalability in perception for autonomous driving: waymo open dataset, 2443-2451(2020). https://doi.org/10.1109/CVPR42600.2020.00252

    [22] Z Ge, S T Liu, F Wang et al. YOLOX: exceeding YOLO series in 2021(2021). https://doi.org/10.48550/arXiv.2107.08430

    [23] G Jocher, A Chaurasia, A Stoken et al. ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation.. https://github.com/ultralytics/yolov5

    [24] G Jocher, A Chaurasia, J Qiu. Ultralytics YOLO.. https://github.com/ultralytics/ultralytics

    Huaiyu Cai, Zhaoqian Yang, Ziyang Cui, Yi Wang, Xiaodong Chen. Image-guided and point cloud space-constrained method for detection and localization of abandoned objects on the road[J]. Opto-Electronic Engineering, 2024, 51(3): 230317-1
    Download Citation