• Photonics Research
  • Vol. 6, Issue 1, 61 (2018)
Leonid L. Doskolovich1、2、*, Evgeni A. Bezus1、2, and Dmitry A. Bykov1、2
Author Affiliations
  • 1Image Processing Systems Institute—Branch of the Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, 151 Molodogvardeyskaya St., Samara 443001, Russia
  • 2Samara National Research University, 34 Moskovskoe Shosse, Samara 443086, Russia
  • show less
    DOI: 10.1364/PRJ.6.000061 Cite this Article Set citation alerts
    Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov. Two-groove narrowband transmission filter integrated into a slab waveguide[J]. Photonics Research, 2018, 6(1): 61 Copy Citation Text show less
    References

    [1] H. A. Haus. Waves and Fields in Optoelectronics(1984).

    [2] T. Mossberg. Planar holographic optical processing devices. Opt. Lett., 26, 414-416(2001).

    [3] G. Calafiore, A. Koshelev, S. Dhuey, A. Goltsov, P. Sasorov, S. Babin, V. Yankov, S. Cabrini, C. Peroz. Holographic planar lightwave circuit for on-chip spectroscopy. Light Sci. Appl., 3, e203(2014).

    [4] S. Babin, A. Bugrov, S. Cabrini, S. Dhuey, A. Goltsov, I. Ivonin, E.-B. Kley, C. Peroz, H. Schmidt, V. Yankov. Digital optical spectrometer-on-chip. Appl. Phys. Lett., 95, 041105(2009).

    [5] C. Peroz, C. Calo, A. Goltsov, S. Dhuey, A. Koshelev, P. Sasorov, I. Ivonin, S. Babin, S. Cabrini, V. Yankov. Multiband wavelength demultiplexer based on digital planar holography for on-chip spectroscopy applications. Opt. Lett., 37, 695-697(2012).

    [6] C. Peroz, A. Goltsov, S. Dhuey, P. Sasorov, B. Harteneck, I. Ivonin, S. Kopyatev, S. Cabrini, S. Babin, V. Yankov. High-resolution spectrometer-on-chip based on digital planar holography. IEEE Photon. J., 3, 888-896(2011).

    [7] X. Ma, M. Li, J. J. He. CMOS-compatible integrated spectrometer based on Echelle diffraction grating and MSM photodetector array. IEEE Photon. J., 5, 7101307(2013).

    [8] R. V. Schmidt, D. C. Flanders, C. V. Shank, R. D. Standley. Narrow-band grating filters for thin-film optical waveguides. Appl. Phys. Lett., 25, 651-652(1974).

    [9] C. S. Hong, J. B. Shellan, A. C. Livanos, A. Yariv, A. Katzir. Broadband grating filters for thin film optical waveguides. Appl. Phys. Lett., 31, 276-278(1977).

    [10] L. A. Weller-Brophy, D. G. Hall. Analysis of waveguide gratings: application of Rouard’s method. J. Opt. Soc. Am. A, 2, 863-871(1985).

    [11] R. Zengerle, O. Leminger. Phase-shifted Bragg-grating filter with improved transmission characteristics. J. Lightwave Technol., 13, 2354-2358(1995).

    [12] J. N. Damask, H. A. Haus. Wavelength-division multiplexing using channel-dropping filters. J. Lightwave Technol., 11, 424-428(1993).

    [13] R. Sainidou, J. Renger, T. V. Teperik, M. U. González, R. Quidant, F. J. G. de Abajo. Extraordinary all-dielectric light enhancement over large volumes. Nano Lett., 10, 4450-4455(2010).

    [14] R. Dragila, B. Luther-Davies, S. Vukovic. High transparency of classically opaque metallic films. Phys. Rev. Lett., 55, 1117-1120(1985).

    [15] D. A. Bykov, L. L. Doskolovich, N. V. Golovastikov, V. A. Soifer. Time-domain differentiation of optical pulses in reflection and in transmission using the same resonant grating. J. Opt., 15, 105703(2013).

    [16] E. Popov, L. Mashev, D. Maystre. Theoretical study of the anomalies of coated dielectric gratings. Opt. Acta, 33, 607-619(1986).

    [17] J. Hu, C. R. Menyuk. Understanding leaky modes: slab waveguide revisited. Adv. Opt. Photon., 1, 58-106(2009).

    [18] G. Lifante. Integrated Photonics: Fundamentals(2003).

    [19] E. Silberstein, P. Lalanne, J.-P. Hugonin, Q. Cao. Use of grating theories in integrated optics. J. Opt. Soc. Am. A, 18, 2865-2875(2001).

    [20] D. A. Bykov, L. L. Doskolovich. On the use of the Fourier modal method for calculation of localized eigenmodes of integrated optical resonators. Comput. Opt., 39, 663-673(2015).

    [21] A. Emadi, H. Wu, G. de Graaf, R. Wolffenbuttel. Design and implementation of a sub-nm resolution microspectrometer based on a linear-variable optical filter. Opt. Express, 20, 489-507(2012).

    [22] N. P. Ayerden, G. de Graaf, R. F. Wolffenbuttel. Compact gas cell integrated with a linear variable optical filter. Opt. Express, 24, 2981-3002(2016).

    [23] A. Emadi, H. Wu, G. de Graaf, P. Enoksson, J. H. Correia, R. Wolffenbuttel. Linear variable optical filter-based ultraviolet microspectrometer. Appl. Opt., 51, 4308-4315(2012).

    [24] K. Hendrix. Linear variable filters for NASA’s OVIRS instrument: pushing the envelope of blocking. Appl. Opt., 56, C201-C205(2017).

    [25] N. V. Golovastikov, D. A. Bykov, L. L. Doskolovich. Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings. Comput. Opt., 41, 13-21(2017).

    [26] W. Suh, S. Fan. All-pass transmission or flattop reflection filters using a single photonic crystal slab. Appl. Phys. Lett., 84, 4905-4907(2004).

    CLP Journals

    [1] Evgeni A. Bezus, Dmitry A. Bykov, Leonid L. Doskolovich. Bound states in the continuum and high-Q resonances supported by a dielectric ridge on a slab waveguide[J]. Photonics Research, 2018, 6(11): 1084

    [2] Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov. Integrated flat-top reflection filters operating near bound states in the continuum[J]. Photonics Research, 2019, 7(11): 1314

    Leonid L. Doskolovich, Evgeni A. Bezus, Dmitry A. Bykov. Two-groove narrowband transmission filter integrated into a slab waveguide[J]. Photonics Research, 2018, 6(1): 61
    Download Citation