• Laser & Optoelectronics Progress
  • Vol. 54, Issue 10, 101401 (2017)
Yang Qibiao*, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, and Bennett Peter
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop54.101401 Cite this Article Set citation alerts
    Yang Qibiao, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, Bennett Peter. Surface Wettability of Laser-Induced Al2O3 Ceramic Tools[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101401 Copy Citation Text show less
    References

    [1] Tian X, Zhao J, Wang Z, et al. Design and fabrication of Si3N4/(W, Ti)C graded nano-composite ceramic tool materials[J]. Ceramics International, 2016, 42(12):13497-13506.

    [2] Li Jian, Ji Lingfei, Hu Yan, et al. Experimental study on milling of Y-TZP ceramic by 532 nm laser[J]. Chinese J Lasers, 2015, 42(8): 0806002.

    [3] Wang B, Liu Z. Cutting performance of solid ceramic end milling tools in machining hardened AISI H13 steel[J]. International Journal of Refractory Metals & Hard Materials, 2016, 55: 24-32.

    [4] Cheng Y, Hu H, Sun S, et al. Experimental study on the cutting performance of microwave sintered Al2O3/TiC ceramic tool in the machining of hardened steel[J]. International Journal of Refractory Metals & Hard Materials, 2015, 55: 39-46.

    [5] Yin Z, Yuan J, Wang Z, et al. Preparation and properties of an Al2O3/Ti (C, N) micro-nano-composite ceramic tool material by microwave sintering[J]. Ceramics International, 2016, 42(3): 4099-4106.

    [6] Zhao G, Huang C, He N, et al. Preparation and cutting performance of reactively hot pressed TiB2-SiC ceramic tool when machining Invar36 alloy[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9/10/11/12): 2679-2688.

    [7] Liu W, Li A, Wu H, et al. Effects of bias voltage on microstructure, mechanical properties, and wear mechanism of novel quaternary (Ti, Al, Zr) N coating on the surface of silicon nitride ceramic cutting tool[J]. Ceramics International, 2016, 42(15): 17693-17697.

    [8] Chen H, Xu C, Xiao G, et al. Investigation of Al2O3/TiC ceramic cutting tool materials with the addition of SiC-coated h-BN: preparation, mechanical properties, microstructure and wear resistance[J]. International Journal of Materials Research, 2016, 107(8): 735-740.

    [9] Xing Y, Deng J, Feng X, et al. Effect of laser surface texturing on Si3N4/TiC ceramic sliding against steel under dry friction[J]. Materials & Design, 2013, 52(24): 234-245.

    [10] Tshabalala L C, Pityana S. Surface texturing of Si3N4-SiC ceramic tool components by pulsed laser machining[J]. Surface and Coatings Technology, 2016, 289: 52-60.

    [11] Etsion I. State of the art in laser surface texturing[J]. Journal of Tribology, 2004, 127(1): 761-762.

    [12] Kümmel J, Braun D, Gibmeier J, et al. Study on micro texturing of uncoated cemented carbide cutting tools for wear improvement and built-up edge stabilisation[J]. Journal of Materials Processing Technology, 2015, 215: 62-70.

    [13] Gakovic' B, Petrovic' S, Albu C, et al. Precise femtosecond laser crater fabrication in hard nanolayered AlTiN/TiN coating on steel substrate[J]. Optics & Laser Technology, 2017, 89: 200-207.

    [14] Li L, Hong M, Schmidt M, et al. Laser nano-manufacturing-state of the art and challenges[J]. CIRP Annals-Manufacturing Technology, 2011, 60(2): 735-755.

    [15] Perrie Walter, Edwardson S P, Fearon E, et al. Diffractive multi-beam ultra-fast laser micro-processing using a spatial light modulator(invited paper)[J]. Chinese J Lasers, 2009, 36(12): 3093-3115.

    [16] Wu Dongjiang, Zhou Siyu, Ma Guangyi, et al. Experiment of quartz glass flute precise thinning by femtosecond laser[J]. Chinese J Lasers, 2015, 42(3): 0303009.

    [17] He Fei, Cheng Ya. Femtosecond laser micromachining: frontier in laser precision micromachining[J]. Chinese J Lasers, 2007, 34(5): 595-622.

    [18] Dunn A, Carstensen J V, Wlodarczyk K L, et al. Nanosecond laser texturing for high friction applications[J]. Optics & Lasers in Engineering, 2014, 62(6): 9-16.

    [19] Su B, Ye T, Lei J. Bioinspired Interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748.

    [20] Liu Dun, Wu Yigang, Hu Yongtao, et al. Fabrication of super-hydrophobic aluminum surface by picosecond laser[J]. Laser & Optoelectronics Progress, 2016, 53(10): 101408.

    [21] Cassie A B D. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551.

    CLP Journals

    [1] Yang Qibiao, Chen Zhongpei, Yang Tao, Zhang Hong, Lou Deyuan, Liu Dun. Surface Wettability of Different Micro-Textured YG6 Processed by Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91404

    Yang Qibiao, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, Bennett Peter. Surface Wettability of Laser-Induced Al2O3 Ceramic Tools[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101401
    Download Citation