• Acta Optica Sinica
  • Vol. 34, Issue 2, 223003 (2014)
Li Huayue*, Liu Jianjun, Han Zhanghua, and Hong Zhi
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/aos201434.0223003 Cite this Article Set citation alerts
    Li Huayue, Liu Jianjun, Han Zhanghua, Hong Zhi. Terahertz Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor[J]. Acta Optica Sinica, 2014, 34(2): 223003 Copy Citation Text show less
    References

    [1] Xu Xinlong, Bo Peng, Li Dehui, et al.. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing [J]. Nano Lett, 2011, 11(8): 3232-3238.

    [2] T Driscoll, G O Andreev, D N Basov, et al.. Tuned permeability in terahertz split-ring resonators for devices and sensors [J]. Appl Phys Lett, 2007, 91(6): 062511.

    [3] Chen Yongyao, Ibraheem A I Al-Naib, Gu Jianqiang, et al.. Membrane metamaterial resonators with a sharp resonance: a comprehensive study towards practical terahertz filters and sensors [J]. AIP Advances, 2012, 2(2): 022109.

    [4] X Piao, S Yu, N Park. Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator [J]. Opt Express, 2012, 20(17): 18994-18999.

    [5] Liang Lanju, Yao Jianquan, Yan Xin. Ultrabroad terahertz bandpass filter based on a multiple-layered metamaterial with flexible substrates [J]. Chin Phys Lett, 2012, 29(9): 094209.

    [6] M Fleischhauer, A Imamoglu, Jonathan P Marangos. Electromagnetically induced transparency: optics in coherent media [J]. Rev Mod Phys, 2005, 77(2): 633-673.

    [7] P Tassin, Zhang Lei, Th Koschny, et al.. Low-loss metamaterials based on classical electromagnetically induced transparency[J]. Phys Rev Lett, 2009, 102(5): 053901.

    [8] P Tassin, Zhang Lei, T Koschny, et al.. Planar designs for electromagnetically induced transparency in metamaterials [J]. Opt Express, 2009, 17(7): 5595-5605.

    [9] Dong Zhenggao, Liu Hui, Cao Jingxiao, et al.. Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials [J]. Appl Phys Lett, 2010, 97(11): 114101.

    [10] R Singh, C Rockstuhl, F Lederer, et al.. Coupling between a dark and a bright eigenmode in a terahertz metamaterial [J]. Phys Rev B, 2009, 79(8): 085111.

    [11] Chen Lin, Gao Chunmei, Xu Jiaming, et al.. Observation of electromagnetically induced transparency-like transmission in terahertz asymmetric waveguide-cavities systems [J]. Opt Lett, 2013, 38(9): 1379-1381.

    [12] S Y Chiam, R Singh, C Rockstuhl, et al.. Analogue of electromagnetically induced transparency in a terahertz metamaterial [J]. Phys Rev B, 2009, 80(15): 153103.

    [13] T Koschny, M Kafesaki, E N Economou, et al.. Effective medium theory of left-handed materials [J]. Phys Rev Lett, 2004, 93(10): 107402.

    [14] Wang Junqiao, Fan Chunzhen, He Jinna, et al.. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity [J]. Opt Express, 2013, 21(2): 2236-2244.

    [15] Chai-Yun Chen, Leng-Wai Un, Nyan-Hwa Tai, et al.. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance [J]. Opt Express, 2009, 17(17): 15372-15380.

    [16] L J Sherry, S H Chang, G C Schatz, et al.. Localized surface plasmon resonance spectroscopy of single silver nanocubes [J]. Nano Lett, 2005, 5(10): 2034-2038.

    [17] S Raza, G Toscano, A-P Jauho, et al.. Refractive-index sensing with ultra-thin plasmonic nanotubes [J]. Plasmonics, 2013, 8(2): 193-199.

    [18] Jian Ye, Pol Van Dorpe. Improvement of figure of merit for gold nanobar array plasmonic sensors [J]. Plasmonics, 2011, 6(4): 665-671.

    [19] J F O′Hara, R Singh, I Brener, et al.. Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations [J]. Opt Express, 2008, 16(3): 1786-1795.

    [20] Wang Wentao, Liu Jianjun, Li Xiangjun, et al.. Direct fabrication of terahertz polarizer and filter by laser induced and non-electrolytic plating with copper [J]. Acta Optica Sinica, 2012, 32(12): 1231002.

    [21] Wang Wentao, Liu Jianjun, Hong Zhi. Terahertz multiband terahertz filter based on three nested closed rings [J]. Acta Optica Sinica, 2013, 33(3): 0323001.

    [22] Hu Tao, A C Strikwerda, K Fan, et al.. Terahertz metamaterials on free-standing highly-flexible polyimide substrates [J]. J Phys D: Appl Phys, 2008, 41(23): 232004.

    [23] S Sree Harsha, D Grischkowsky. Terahertz (far-infrared) characterization of tris(hydroxymethy) aminomethane using high-resolution waveguide THz-TDS [J]. J Phys Chem A, 2010, 114(10): 3489-3494.

    [24] Wang Wei, Shi Weibo, Ma Wuxi, et al.. Study on the concentration measurement of glucose solution with terahertz two-path transmission method [J]. Acta Metrologica Sinica, 2010, 31(6): 567-570.

    CLP Journals

    [1] Sun Yaru, Shi Tonglu, Liu Jianjun, Hong Zhi. Terahertz Label-Free Bio-Sensing with EIT-Like Metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 328001

    [2] Xing Wei, Yan Fengping, Tan Siyu, Liu Shuo, Li Lizhao. Simulation Analysis on the Designing of High-Q Terahertz Metamaterials[J]. Chinese Journal of Lasers, 2016, 43(1): 106005

    [3] Gao Hong, Yan Fengping, Tan Siyu, Bai Yan. Design of Ultra-Thin Broadband Terahertz Metamaterial Absorber Based on Patterned Graphene[J]. Chinese Journal of Lasers, 2017, 44(7): 703024

    [4] Wang Jingli, Chen Heming. Single-Polarization Single-Mode Rhombic-Hole Terahertz Photonic Crystal Fibers[J]. Acta Optica Sinica, 2014, 34(9): 906002

    [5] Zhang Jianna, Zhang Bo, Shen Jingling. Absorption Modulation Method of Terahertz Metamaterial[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110002

    Li Huayue, Liu Jianjun, Han Zhanghua, Hong Zhi. Terahertz Metamaterial Analog of Electromagnetically Induced Transparency for a Refractive-Index-Based Sensor[J]. Acta Optica Sinica, 2014, 34(2): 223003
    Download Citation